
OpenWPM:
An automated platform for web privacy measurement

Draft — March 15, 2015

Steven Englehardt, Chris Eubank, Peter Zimmerman, Dillon Reisman, Arvind Narayanan

Princeton University

{ste,cge,peterz,dreisman,arvindn}@cs.princeton.edu

ABSTRACT
Web measurement techniques have been highly influential
in online privacy debates and have brought transparency
to the online tracking ecosystem. Due to its complexity,
however, web privacy measurement remains a specialized
research field. Our aim in this work is transform it into a
widely available tool.

First, we analyze over 30 web privacy measurement stud-
ies, identify several methodological challenges for the ex-
perimenter, and discuss how to address them. Next, we
present the design and implementation of OpenWPM, a flex-
ible, modular web privacy measurement platform that can
handle any experiment that maps to a general framework.
It supports parallelism for speed and scale, automatic re-
covery from failures of the underlying browser, and realistic
simulation of users. OpenWPM is open-source1 and has al-
ready been used as the basis of several published studies on
web privacy and security. We show how our generic plat-
form provides a common foundation for these diverse exper-
iments, including a new study on the “filter bubble” which
we present here.

1. INTRODUCTION
Web Privacy Measurement — observing websites and ser-
vices to detect, characterize and quantify privacy-impacting
behaviors — has proved tremendously influential. While
tools that block web tracking are used only by a small mi-
nority and address only a part of the problem, web pri-
vacy measurement has repeatedly forced companies to im-
prove their privacy practices due to public pressure, press
coverage, and regulatory action [8, 15]. Meanwhile, the
scope of web privacy measurement has expanded beyond
simply uncovering tracking to uncovering how personal data
is used. Specifically researchers have characterized various
types of tracking-based personalization: price discrimina-
tion and steering [27], behaviorally targeted advertising [34],
search results [61], and more.

On the other hand, web privacy measurement (hereafter,
WPM) has several challenges, making it di�cult for new-
comers. First, there are many methodological pitfalls such
as the di�culty of rigorously establishing a causal relation-

1https://github.com/citp/OpenWPM

ship between user actions, such as visiting certain websites,
and a later observation, such as being shown a certain ad.
Solutions to these di�culties are often “folk knowledge”.
Second, building the technical infrastructure for WPM —
using automated browsers to simulate users browsing the
web and extracting measurements of interest — is a signif-
icant research and engineering challenge. As a result there
is no usable, generic platform for WPM, and it has
been largely confined to a niche community of researchers.

At the same time, there has been increasing demand from
many groups outside academic researchers to be able to do
studies on online privacy: regulators, self-regulators, the
press, activists, and even the general public. Such broader
participation is necessary to achieve e↵ective, continual over-
sight and transparency of web privacy practices. After all,
researchers typically only conduct a study if there are new
methodologies to be demonstrated.

Our contributions. Put simply, we seek to transform web
privacy measurement from a niche research field to a widely
available tool.

• We identify the experimental aspects shared by all WPM
studies and identify over 30 that fit our framework (Sec-
tion 2). Based on a thorough methodological analysis, we
identify seven challenges. We synthesize the best prac-
tices and make recommendations based on prior works as
well as our own findings and experience (Section 3). We
identify cases where methodological challenges remain un-
resolved, leading to avenues for future work. We seek to
make this a methodological guidebook for future studies.

• Our second and key contribution is OpenWPM, a flexi-
ble web privacy measurement platform (Section 4). The
python-based platform is designed to give researchers the
ability to launch reliable measurements with real browsers
at web-scale. OpenWPM has been designed around stabil-
ity, modularity, and scalability; providing instrumented,
extensible browsers as isolated instances. We have incor-
porated solutions to many of the practical challenges in
scaling real browser automation and measurement. Open-
WPM exposes a scriptable command-line API to researchers,
allowing them to launch parallel measurement instances
and drive them using a high-level language. The platform
is bundled with browser and network level instrumenta-
tion and can be expanded through the browser plugin in-
terface to include custom or pre-existing instrumentation.

If you'd like to cite OpenWPM (in particular, if you used the tool in your own experiments), please cite our CCS 2016
publication found at https://github.com/citp/OpenWPM/#citation rather than this paper.

https://github.com/citp/OpenWPM

• OpenWPM has been used for six completed studies so far,
both by us and other researchers [51, 6, 50, 28], and several
others are in progress, both at our institution and else-
where. The studies encompass tracking, personalization,
and web security, and several of them have already led to
improvements and fixes to privacy and security. These ex-
periments have crucially benefited from several advanced
features of OpenWPM such as the ability to automatically
log into websites using specified credentials. Using these
case studies, we show in detail how OpenWPM’s capabili-
ties enable quickly designing and running an experiment.

• Two of these six studies have not previously been re-
ported. We examine the “filter bubble,” the supposed
e↵ect that occurs when online information systems per-
sonalize what is shown to a user based on what the user
viewed in the past. Based on experiments on nine ma-
jor publisher sites, we find that only some sites perform
any history-based personalization at all, and when they
do, the e↵ect sizes are very small. Thus, our results con-
tradict the narrative of pervasive personalization leading
users into feedback loops of reinforcing viewpoints and
ideological “bubbles.”

Our final study is on security and authentication prac-
tices. Contrary to the best practice of using IP address,
browser fingerprints, and other such features to trigger
password re-entry, we demonstrate through measurement
that on most websites, an attacker who steals authentica-
tion cookies is in a position to unconditionally imperson-
ate the user.

In developing OpenWPM, our vision for the future of the
web is one where tracking and personalization are readily
apparent, thus aligning incentives between publishers, third
parties, and consumers. The most egregious privacy viola-
tions will be quickly detected based on measurement and
blocked by browser privacy tools. Finally, measurement re-
sults will crucially inform the vigorous ethical and policy
debates on tracking, surveillance, and data-driven personal-
ization that have been playing out in Washington, D.C. and
around the world.

2. BACKGROUND AND RELATED WORK
Online tracking. As users browse and interact with web-
sites, they are observed by both “first parties,” which are
the sites the user interacts with directly, and “third parties”
which are typically hidden trackers such as ad networks em-
bedded on most web pages. Third parties can obtain users’
browsing histories through a combination of cookies and
other tracking technologies that allow them to uniquely iden-
tify users, and the “referer” header that tells the third party
which first-party site the user is currently visiting. Other
sensitive information such as email addresses may also be
leaked to third parties via the referer header.

Personalization. The primary driver of online tracking is
behavioral advertising — showing ads based on the user’s
past behavior, especially browsing and search history. From
a technical perspective, behavioral advertising is an instance
of personalization of content based on user attributes or
behavior. Many other practices that raise privacy or eth-
ical concerns fall under this umbrella: price discrimination,

where a site shows di↵erent prices to di↵erent consumers for
the same product [27]; steering, a gentler form of price dis-
crimination where a product search shows di↵erently-priced
results for di↵erent users [37]; and the filter bubble, the sup-
posed e↵ect that occurs when online information systems
personalize what is shown to a user based on what the user
viewed in the past. The worry is that users will be shown
articles reinforcing their existing views, thus isolating them
into ideological “bubbles”.

Related work: web privacy measurement. There are
two main ways to collect large-scale data for WPM exper-
iments: crowd-sourcing and simulating users, i.e., running
bots. Our focus is on the latter type, but there are many
similarities to the two types of studies. We exhaustively sur-
veyed both types of studies, and found over 30. They are
summarized in Table 2.

We see three types of measurement targets: (1) tracking,
whether active (cookies, Local Shared Objects, etc.) or pas-
sive (fingerprinting); (2) data flow between trackers — leak-
age identifying information and sensitive attributes, and ex-
change of pseudonymous cookies (cookie syncing) and (3)
various types of personalization and targeting — contents
of ads, bid prices of ads, prices of products, listings of prod-
ucts, and search results. A variety of technical tools were
used for measurement. Unfortunately, there was a great deal
of duplication of e↵ort, which served as an additional mo-
tivation for our platform. Researchers tested the variation
of tracking and personalization based on a number of vari-
ables: location, type of browser (user-agent), demographics,
behavioral interest categories, and use of privacy tools.

Related work: WPM platforms. An infrastructure for
automated web privacy measurement has three components:
(i) input — simulating users who visit and interact with web
sites and services, (ii) output — recording how these sites
treat the user (tracking, content personalization, etc.) and
(iii) analysis — using the recorded data to determine corre-
lations or other conclusions. We briefly discuss how Open-
WPM compares to other platforms that have been built. We
consider a tool to be a platform if is is publicly available and
there is a some generality to the types of studies that can
be performed using it.

FourthParty is a Firefox plug-in for instrumentation and
does not handle automation [40]. OpenWPM provides dif-
ferent options for instrumentation (Section 4). TrackingOb-
server is a Chrome extension that detects tracking and ex-
poses APIs for extending its functionality such as measure-
ment and blocking [52].

XRay is a platform for di↵erential correlation: inferring
input-output relationships in any personalized web service
[33]. XRay handles the analysis phase of WPM in a generic
way, but not driving the browser or instrumentation. This
is precisely the converse of OpenWPM, suggesting the ex-
citing possibility of using the two tools in concert to achieve
an even greater degree of generic automation.

AdFisher is a tool for running automated experiments on
personalized ad settings [16]. It contains a barebones au-
tomation framework with similar components as ours (Sele-

nium, xvfb), but the key technology is a machine-learning
system for causality attribution. Again there is the possibil-
ity of running OpenWPM’s automation and instrumentation
together with AdFisher’s analytic component.

Several research groups have built or deployed crowd-sourcing
platforms for WPM, including $heri↵ and Bobble [61, 42].
Some challenges here include providing value to users to in-
centivize participation, participant privacy, etc.

Web security measurement often uses similar methods
as WPM, and the boundary is not always clear. Yue and
Wang modified the Firefox browser source code in order to
perform a measurement of insecure Javascript implementa-
tions on the web [62] . Nikiforakis et al. utilized a headless
browser to measure the amount of third-party JaveScript
inclusions across many popular sites and the vulnerabilities
that arise from how the script is embedded [45]. Zarras et
al. used Selenium to drive crawls that measured and cat-
egorized malicious advertisements displayed while browsing
popular sites [63]. Other studies have analyzed Flash and
JavaScript elements of webpages to measure security vulner-
abilities and error-prone implementations [58, 48].

3. METHODOLOGICAL CHALLENGES
We present a set of methodological challenges in design-
ing WPM experiments and recommendations for addressing
them. This list is based on an analysis of over 30 web privacy
measurement studies that met our criteria (Table 2) and in-
terviews with the authors of several of these studies. These
methods are necessary to ensure valid and accurate results.

3.1 Statistical rigor
When making inferences about personalization (whether of
ads, prices, search results), statistical rigor is paramount.
There are four levels of inferences one can make: detecting
personalization, measuring associations, inferring causality,
and quantifying e↵ect sizes. We illustrate with an example.
A crowd-sourced study of an online retailer might find that
some users see higher prices for the same product than oth-
ers (see below for how to rule out the e↵ect of A/B testing).
Further analysis might reveal being logged in is correlated
with higher prices. However, at this stage we cannot rule out
a spurious association due to a confound: perhaps users on
desktops (vs. mobile) are shown higher prices and are also
more likely to log in. Further testing using simulated users
and randomized, controlled experiments reveals that logging
in causes displayed prices to increase. Finally, increasing the
sample size of the experiment allows us to estimate the av-
erage price increase due to logging in as 10% ± 2%.

As this example shows, crowd-sourcing is ideal for detecting
the existence of personalization and, with some care, for de-
tecting associations. Randomized experiments are essential
for causal inference, but even so, they are methodologically
tricky, as we now discuss.

Handling confounds. Even with the ability to do random-
ized controlled experiments, there are several confounding
factors. Location, User-Agent, etc. are obvious ones. Ads
and search indices are subject to temporal variation (churn).
A tricky type variation of temporal churn is the “carry-over

e↵ect” in web searches where the search history in the last
10 minutes a↵ects results [26]. Distributed systems such as
search engines have small but important consistency issues
between the di↵erent nodes, so the identity of the node that
is queried a↵ects the results. The normal load-balancing ar-
chitecture of these systems hides the identity of the node
from the client, necessitating workarounds.

There is a long history and extremely well-developed theory
of causal inference in statistics [23, 5]. The general principle
for avoiding confounds is control what you can, randomize
what you can’t. Together, the studies we analyzed used a
variety of techniques to increase the validity of causal attri-
bution. The exact set of techniques necessary depends on
the goals. A very common approach was to execute di↵erent
crawls in lockstep. For distributed crawls (to measure the
e↵ect of location) this is challenging; syncing using NTP can
be used [42]. Also common was to use the same IP or subnet
to control for e↵ect of location. When the e↵ect of history
tracking needed to be eliminated in Mikians et al [42], they
blocked the referer header, 3rd party cookies, flash cook-
ies and other stateful trackers. Hannak et al. additionally
controlled for browser fingerprints [27].

A/B testing is a tricky confound. Suppose we wish to test
if a privacy tool has an impact on targeted advertising, so
we create a “treatment unit” which has the privacy tool and
a “control unit” which has no privacy tool. Unluckily for
us, the ad network assigns the treatment unit to bucket ‘A’
which receives no targeted advertising and the control unit
to bucket ‘B’ which does. Then we will conclude that the
privacy tool prevents targeted advertising, even if it in fact
has no e↵ect. The solution, of course, is to average across
multiple treatment and control units. To summarize, we
recommend that the experimenter exhaustively enumerate all
directly or indirectly observable client-side attributes and ei-
ther control or randomize them, and further, ensure adequate
sample sizes of each experimental condition.

Ensuring non-interference. It is important to ensure
that the activities carried out by one experimental unit (browser
instance) do not a↵ect other units. This is the non-interference
assumption. Tschantz et al. provide evidence of interfer-
ence, which they term “cross-unit e↵ects”, in the measure-
ment of the diversity of Google text ads [56] when di↵erent
browser instances are running on the same machine. To mit-
igate such e↵ects, we must ensure that di↵erent experimen-
tal units are in fact recognized as di↵erent by the service.
One way to do this is to randomize browser fingerprints and
other pseudo-identifiers across experimental units. Thus,
while the traditional theory elevates controlling variables
over randomization, in the WPM context randomization is
sometimes the better choice.

3.2 Realistic user simulation
Often the simulated users must mimic the browsing patters
of di↵erent demographics of real users. A study of price
discrimination modeled histories of “a✏uent” and “budget”
shoppers based on Alexa categories [42] and numerous stud-
ies simulated browsing histories of users with topical inter-
ests [42, 49]. Other choices include the Quantcast list of top
sites with demographic breakdowns [26] and Google search

results for topical keywords [42].

We must note a prominent limitation: none of the studies
obtained real users’ browsing histories for controlled exper-
imentation. This limits realism to a degree. Search his-
tory on a small scale was obtained and studied in Majumder
and Shrivastava, [35]. Another study simulated users issuing
search queries (to Bing) of pseudonymous users in the leaked
AOL search log dataset, followed by visiting the top 5 re-
sults returned by Bing. This is arguably an interesting way
to obtain an approximation to real browsing history [34].

Studies outside the web privacy measurement community
have used various datasets of real user logs for studying other
questions [24, 21, 4]. We attempted to obtain these datasets,
but they were either no longer available or prohibitively ex-
pensive. As yet there is no ideal solution here.

3.3 Practical and ethical challenges
Full-fledged vs. stripped down browsers. We dis-
cuss this issue in Section 4. We recommend that researchers
use full-fledged automated browsers; we have anecdotal re-
ports of di↵erences in behavior when using stripped-down
browsers such as PhantomJS. If a stripped-down browser is
necessary, we recommend explicit checks to see if it accu-
rately mimics a full-fledged one.

APIs vs. content extraction. Authors, such as Hannak,
et. al. [26], have reported that using APIs, even when avail-
able, is problematic because of rate limits or because they
don’t return the same results as the web interface. There-
fore scraping content from web interfaces is usually neces-
sary. This imposes several practical challenges: it is buggy
and scales poorly across di↵erent websites. Our content ex-
traction module (Section 4) is a step toward mitigating this
problem.

Ethical challenges. Two sets of ethical challenges are fre-
quently reported: collecting personal information in crowd-
sourcing studies and the ethics of running bots. The former
is a well-understood privacy challenge, and typically handled
by a combination of informed consent, data minimization,
and anonymization. For the latter, researchers have univer-
sally avoided clicking on ads and have sometimes sought IRB
approval. However, even viewing ads may cost advertisers
money, and not being able to click on ads limits the kinds
of experiments that can be done.

Since greater transparency is in the interest of companies
that wish to compete on privacy, developing a mutually ac-
ceptable ethical protocol for experiments would be a huge
step forward. For example, researchers could execute unfet-
tered experiments on services that have opted into this pro-
tocol, and after the fact, submit a list of cookies/fingerprints
that belong to their bots, so that ad companies can discount
those clicks from their click reporting.

4. MEASUREMENT PLATFORM
An infrastructure for automated web privacy measurement
has three components: simulating users, recording outputs
(tracking, content personalization, etc.), and analysis. We
set out to build a platform that can automate the first two

components and can ease the researcher’s analysis task. We
sought to make OpenWPM general, modular, and scalable
enough to support essentially any WPM experiment. This
core vision translated into a few key design requirements.

4.1 Requirements

4.1.1 Browser and driver

We considered a variety of choices to drive crawls, i.e., to
instruct the browser to visit a set of pages (and possibly
to perform a set of actions on each). The three categories
of choices are HTTP libraries like curl or wget, lightweight
browsers like PhantomJS (an implementation of WebKit),
and full-fledged browsers like Firefox and Chrome.

Realism vs. performance and stability. HTTP libraries are
clearly unsuitable for WPM — they do not support ba-
sic browser functionality such as JavaScript. Lightweight
browsers are stable and were designed to have low over-
head. While they might be suitable for an individual study,
a generic platform must be able to accurately reproduce the
range of functionality of a full browser. Lightweight browsers
don’t support plugins and may have subtle di↵erences aris-
ing from non-standard rendering and JavaScript engines.

Instead, we chose to use Selenium, a cross-platform web
driver for Firefox, Chrome, Internet Explorer, and Phan-
tomJS. Selenium provides a common interface to drive all
major browsers, allowing studies to fully reproduce the con-
ditions of a real user browsing. Since it is ultimately an
unaltered consumer browsing visiting each page, all tech-
nologies that a typical user would support (e.g., HTML5
storage options, Adobe Flash) are also supported by mea-
surement instances. A key disadvantage of Selenium is that
Selenium frequently crashes or hangs indefinitely due to its
blocking API [9], as it was designed to be a tool for web-
masters to test their own sites rather than an engine for
automated crawls. To fix this, we need to take additional
steps to ensure stability and scalability.

Design Requirement: Stability During the course
of a long crawl, a variety of unpredictable events, such
as page timeouts or browser crashes, could halt the
crawl’s progress or, even worse, corrupt the data. The
browser automation framework should recover from
such events gracefully, quickly and intact.

Bot detection. Many websites have systems in place to de-
tect clients that are bots. The usual intention is to prevent
undesirable behaviors such as click fraud, spam, and con-
tent extraction via scraping. The most common response
is blocking, but we have heard unconfirmed reports of more
subtle behavior changes by websites such as disabling per-
sonalization or showing only pro bono ads.

Design Requirement: Realism. Our automation
framework should mimic a real person surfing the web
as closely as possible—both in terms of the under-
lying browsing technology and the way in which the
platform interacts with pages. Websites detecting au-
tomated browsers may act in a pathological manner,
thus weakening experimental results.

Interacting with the platform. Selenium provides a com-
plex API for interacting with sites and parsing web content.
However, the researcher is typically interested in higher-level
commands, essentially mimicking interactions a user is likely
to take as they browse the web. Examples include finding
the login page of a site or finding all of the links or search
results on the page.

Design Requirement: Abstraction. The plat-
form’s automation API should serve as a user-friendly
abstraction, hiding the complexities involved in per-
forming browser tasks such as finding and clicking
buttons on a page. Keeping commands at a high-
level reduces the complexity and limits code duplica-
tion for scripts used to drive experiments.

4.1.2 Browser instrumentation

When running studies, there is a need to collect outputs
from various locations in the browser or from the visited
websites. Instrumentation can be done in one of three ways:
modifying the browser source code directly, extending the
browser with an extension, or wrapping a data collection
layer around the browser (for example, with a proxy).

Instrumentation choices. A popular instrumentation tool is
FourthParty [40] which has been used in several studies [39,
38, 14, 19, 22]. Other studies used custom plug-ins [34, 43,
49]. The advantage of plugin-based instrumentation is that
the researcher has access to the javascript running on the
page, which can be used to both make measurements and
interact with the page.

Researchers can also use a proxy instead of or in addition
to browser instrumentation. We have seen past work use
Mitmproxy and Fiddler, although custom proxies were also
seen [26, 42]. The benefit of using a proxy for instrumenta-
tion is that it has the ability to intercept all network tra�c
into and out of the browser, as well as the ability to alter
tra�c after it leaves the browser. For example, in Mikians
et al [42] a proxy was used to modify DNT headers to test
the impact of Do-Not-Track, as well as to strip X-Frame-
Options headers to force sites to be framed.

Finally, researchers can modify the source-code of browsers
directly and perform measurements using the custom browser
[6, 7]. The has the benefit of complete access to all browser
calls and functions beyond what one would achieve through
a browser extension in JavaScript.

Design Requirement: Compatibility & Modu-
larity. The platform must support any instrumen-
tation option the researcher prefers. It should also
easily interface with existing instrumented browsers
and browser extensions. The system should be mod-
ular, allowing the researcher to swap out instrumen-
tation components between studies or in the course
of a single study.

4.1.3 Platform Requirements

In addition to the browser, driver, and instrumentation re-
quirements, there are platform requirements that the entire
system should satisfy.

We found that many prior studies deployed distributed ver-
sions of their crawlers — either to increase scale or to mea-
sure personalization based on geographic location by deploy-
ing crawlers to PlanetLab [61, 26, 42, 49].

Design Requirement: Scalability. The primary
advantage of browser automation is that it enables
researchers to repeatedly visit sites at a rate infeasible
for humans. The platform should allow increasing
speed through browser parallelization and the ability
for di↵erent instances to write to the same database.

Finally, easy repeatability is important for several reasons.
Research studies are typically conducted in a “one-o↵” fash-
ion. For example, “evercookies” were at the center of fierce
debates when discovered in use 2010 [53], resulting in a law-
suit and a $500,000 settlement [17]. However, a 2014 found
numerous websites using these tracking technologies[6]. Sec-
ond, enforcement agencies need to be able to easily repro-
duce research findings in order to be able to take action [20].

Design Requirement: Repeatability. To pro-
mote scientific rigor, the platform should enable re-
searchers to easily reproduce experiments. It should
also log data in a standardized format so research
groups can easily run their analysis scripts on data
created by other teams to verify results.

4.2 Design and Implementation
We divided our browser automation and data collection in-
frastructure into three main modules: browser managers
which act as an abstraction layer for automating individual
browser instances, a user-facing task manager which serves
to distribute commands to browser managers and a data
aggregator which acts as an abstraction layer for browser in-
strumentation. In doing so, we have also created a high-level
language for issuing crawl commands which can be extended
as researchers add custom commands. The entire platform
is built using Python and Python-compatible libraries.

Task
Manager

Data
Aggregator

WWW

SeleniumBrowser
Manager Browser

...

Browser
Manager Browser

Browser
Manager Browser

Instrumentation Layer

Analysis
Scripts

Selenium

Selenium

Figure 1: High-level overview of OpenWPM
The task manager monitors browser managers, which convert
high-level commands into automated browser actions. The data
aggregator receives and pre-processes data from instrumentation

Browser managers. Requiring browser managers as an
abstraction layer stems from our choice to use Selenium for
automation. As discussed in Section 4.1.1, Selenium is sus-
ceptible to frequent crashing and hanging. As such, one of

our design requirements is to isolate Selenium from the rest
of the components of the platform.

Each browser manager instantiates a Selenium instance with
a specified configuration of user preferences (e.g. turning on
Do Not Track). It is responsible for converting high-level
platform commands (e.g. visiting a site) into specific Sele-
nium subroutines. The use of a separate manager for each
browser enables us to save per-browser preferences and state
which stay consistent between any browser failures. Since
each browser manager exists within it own process, this ab-
straction layer also protects other platform components from
browser failures. All Selenium-specific code is contained in
the browser manager, making a future conversion to a dif-
ferent web-driver easier if it is ever necessary.

Browser managers have the ability to launch measurement
instances in a headless container. Full browsers have no
headless option, as they are built for graphical user interac-
tion. To solve this problem, we leverage pyvirtualdisplay to
interface with Xvfb, which draws the graphical interface of
the browser to a virtual frame bu↵er. Headless crawls allow
greater parallelization due to lower memory consumption,
deploying crawls to remote machines, and easily generating
screenshots of rendered sites when necessary.

Task manager. The task manager provides a scriptable
command-line interface for controlling multiple browsers si-
multaneously during a study. It allows the researcher to dis-
tribute commands to browser managers while transparently
abstracting away any stability code or error handling. The
task manager monitors the browser managers, restarting one
if it detects a crash or failure to complete a command within
a time limit (which can be set on a per-command basis).

The Task Manager API exposes four options for issuing com-
mands to multiple browser managers: either on a first-come-
first serve basis, or to individual browser managers or to all
browsers. In the latter case there is the option of executing
them synchronously or asynchronously. This allows the re-
searcher to easily launch multi-browser measurements that
scale to the available system resources by only specifying the
number of parallel instances to run.

The task manager achieves this by launching a per-browser
command execution thread each time the researcher issues
a command to that particular browser. This thread is given
a specific lifetime and is set to monitor the state of the
corresponding browser manager process. If the thread ei-
ther times out or sees that the browser manager process has
ended, it enters a crash recovery mode where it:

1. Dumps all browser local state to a temporary location
2. Kills any remaining processes related to that browser

manager (the browser process, the Xvfb process, and any
custom per-browser processes the researcher launched)

3. Initializes a new browser manager with all of the pre-
crash configuration variables

4. Loads the browser state from the temporary location
5. Calls the browser manager to restart a measurement in-

stance with that state

Data aggregator. The data aggregator, which exists within
its own process, receives data during the course of the crawl,

manipulates it as necessary and writes it to a central SQLite
database. Access to the data aggregator is over a socket
interface which can easily be connected to from any num-
ber of browser managers or instrumentation processes. The
data aggregator serializes data from an arbitrary number of
sources without the need for database access on a per-source
basis. Furthermore, isolating the data aggregator behind a
network interface ensures that browser crashes in other pro-
cesses do not corrupt any data or deny access to other data
collecting processes.

In comparison to client-server databases, local SQLite databases
do not require end-user setup of a database server and enable
researchers to easily share data. However, socket connec-
tions to the data aggregator easily provide support for other
frameworks such as MySQL or cloud hosted databases as
studies grow in scale.

Instrumentation. We evaluated di↵erent instrumentation
options, including: FourthParty, several proxies, and custom
plugins. As described in Section 4.1.2 each instrumentation
option has positives and negatives depending on the research
application. We settled on including Mitmproxy as the pri-
mary means of instrumenting the browser, as nearly all of
our studies have required monitoring what is transmitted
through network tra�c. We also built a custom browser
plugin for JavaScript-based instrumentation as a fallback.

Workflow. As an example workflow, the researcher issues
a command to the task manager and specifies that it should
synchronously execute on all browser managers. The task
manager checks all of the command execution threads and
blocks until all browsers are available to execute a new com-
mand. Then it creates new command execution threads for
all browsers and sends the command and command param-
eters over the process boundary to the browser manager.
The browser manager interprets this command and runs
the necessary Selenium code to execute the command in
the browser. Once the Selenium code returns, the browser
manager can send returned data (e.g. the parsed contents
of a page) to the data aggregator. Similarly, any browser
instrumentation tools, such as mitmproxy, are continually
sending data to the data aggregator. Once the command
is complete, the browser manager notifies the task manager
that it is ready for a new command.

4.3 Advanced capabilities
Automatic login. Studies which require a measurement
of data flow under an authenticated session would benefit
greatly from the ability automatically login to sites. We have
made progress implementing an automated login utilizing
Facebook’s federated login infrastructure (formerly called
Facebook Connect, now Facebook Login). We have used
this to successfully login to half of the top-200 Alexa sites
that support user accounts. The capability is useful for stud-
ies which do not require a full coverage of logins but rather
simply require access to some sample of sites. We describe
a sample study which uses this capability in Section 5.

Bot detection mitigation. While intended to thwart
click-fraud and undesired web scraping, bot detection threat-
ens the validity of web measurement results. In order to

simulate real user behavior, we implemented countermea-
sures such as simulated mouse movements, screen scrolling
and randomized delays when loading pages. The inclusion
of additional countermeasures is reserved for future work.

Browser fingerprinting mitigation. For researchers run-
ning multiple browsers from the same machine, experiments
may su↵er from interference e↵ects if online trackers link
these browsers together through browser fingerprinting. As
a countermeasure, our platform enables researchers to ran-
domize browser settings or explicitly configure the user-agent
string, extensions pre-loaded into the browser and screen
resolution. Since Nikiforakis et al [46] note that randomiz-
ing user-agent can cause a rendering issues, adopting their
suggestion of subtle variations in properties implemented at
the browser-level is one future direction in fingerprint miti-
gation.

Tracking cookie detection. Di↵erentiating identifying
cookies from non-identifying cookies is essential to many
studies aiming to quantify the level of tracking. The sim-
plest approach is to treat cookie values that are di↵erent
in two di↵erent crawls as unique [41]. Olejnik et al. filter
out cookies with values shorter than 10 characters [49]. The
detection method developed as part of one of our previous
studies [6] has been adapted and included as a postprocess-
ing step of OpenWPM.

Fine-grained profiles. We support programmatic access
to browser preferences and storage vectors (such as HTTP
cookies, HTML5 LocalStorage, HTML5 Indexed DB and
Adobe Flash objects) during a crawl. This fine-grained con-
trol is useful for reverse engineering website behavior. We
also provide a simple interface for saving and loading these
profiles between crawls to enable simulating a specific user
over longer studies.

Content extraction. In many types of personalization
studies, the content to be extracted or measured consists of
search results, product listings, or other such lists. Struc-
turally, elements of these lists are subtrees of the page DOM
tree that have a high pairwise structural similarity. We ex-
ploited this observation to create a clustering algorithm that
automatically extracts the list with the greatest amount of
text from any given page or container in an unsupervised
fashion. When run on a Google or Bing search results page,
it extracts the search results. When run on say reddit.com,
it extracts the main list of articles. This module frees the
researcher from the need to write site-specific DOM parsing
code for extracting lists.

Additionally, OpenWPM can automatically infer and log the
Xpath of located elements (such as buttons) or extracted
content on websites, allowing tasks such as login to be car-
ried out through automated means at later time.

Browser extension integration. Instead of requiring re-
searchers to re-implement existing tools, the platform a↵ords
the ability to incorporate existing automation and privacy
browser extensions. For example, during one of our previ-
ous studies we installed the iMacros browser extension in
each instantiated browser as a method of automated login.
Researchers may also want greater visibility into which ele-

ments of the DOM (e.g., included javascript elements) per-
form calls to third-party websites. Our platform has allowed
researchers to install a custom extension that logs what calls
are made to which third-parties, and which elements of the
DOM performed them. These studies are described in Sec-
tion 5. In future work, we plan to implement an interface
with which browser extensions can input commands directly
from the task manager. This will complement our current
support for exporting data collected from extensions.

Log-and-replay architecture. In order to promote exper-
iment reproducibility, the platform logs all user-configurable
parameters as well as the task master command history,
complete with timestamps and whether given commands
executed successfully. By sharing these history logs, re-
searchers can enable others to re-play and verify studies.

4.4 Evaluation
As we describe in Section 5, we have utilized OpenWPM to
conduct multiple large-scale experiments. We now present
an evaluation of OpenWPM’s performance and generality.

Stability. Using vanilla Selenium in a variety of settings,
the best average we were able to obtain was 800 pages with-
out a freeze or crash. Even in small scale studies, the lack
of recovery led to loss of training profiles and measurement
data. Using the isolation provided by our browser manager
and task manager, we recover from all browser crashes and
have observed no data corruption during crawls of 10,000
pages while retaining browser state. During the course of
our news personalization study described in Section 5, we
successfully crawled 281,494 pages during which we recov-
ered from 2,252 failed page loads.

Resource usage. When using the headless configuration,
we are able to run up to 20 browser instances on a 16GB,
i7 quad-core commodity desktop. Due to Firefox’s memory
consumption, stateful parallel crawls are memory limited
while stateless parallel crawls are typically CPU limited and
can support a higher number of instances. On the same
machine we can run 35 browser instances in parallel if the
browser state is cleared after each page load.

Generality. For the news crawls described in Section 5,
the browsing and measurement was completely automated
with the exception of writing custom template scripts for ex-
tracting headlines. OpenWPM was able to reduce the lines
of code (LOC) required to automate the experiment by 70%
over running the study on a a previously coded lightweight
Selenium wrapper. This reduction in LOC was comple-
mented by the modularity of the platform, where general
methods (e.g., link extraction) were included as a module
that can be shared across many experiments.

5. APPLICATIONS
We describe six recent studies that utilized OpenWPM to
answer research questions in the fields of security, privacy,
and personalization. Table 1 gives an overview of the capa-
bilities of OpenWPM that each study utilized.

The ability to automate a browser and keep state while
browsing are the two most commonly used features of Open-

Study Type B
ro
w
se
r
au
to
m
at
io
n

St
at
ef
ul
cr
aw
ls

P
er
si
st
en
t
pr
ofi
le
s

F
in
e-
gr
ai
ne
d
pr
ofi
le
s

A
dv
an
ce
d
pl
ug
in
su
pp
or
t

A
ut
om

at
ed

lo
gi
n

D
et
ec
t
tr
ac
ki
ng

co
ok
ie
s

M
on
it
or
st
at
e
ch
an
ge
s

C
on
te
nt

ex
tr
ac
ti
on

HSTS and key pinning misconfigurations [28] Security • • • � •
FB Connect login permissions [51] Privacy • • �
Persistent tracking mechanisms [6] Privacy • • • • • •
Surveillance implications of web tracking [50] Privacy • • • •
Secondary authentication mechanisms Security • • • • • • �
News personalization (“filter bubble”) Personalization • • • �

Table 1: Studies carried out using OpenWPM
An unfilled circle indicates that the feature was useful but application-specific programming or manual e↵ort was still required.

WPM by the studies we examine. This is because these tasks
are fundamental to web measurement; users are tracked and
profiled by their browser’s properties and the history they
accumulate. Providing real browser automation in a robust
way allows researcher of the platform to skip that low-level
step and build application specific features on top.

5.1 Privacy
Persistent Tracking Mechanisms. Tracking mechanisms
have moved beyond simple cookie storage to extend to a di-
verse set of locations within the browser’s client-side storage.
Similarly, tracking has extended beyond a single domain
as more domains begin to share cookie identifiers through
cookie synchronization. OpenWPM was used in a study
which measured the use of canvas fingerprinting, evercook-
ies, and cookie synchronization [6]. This study found that
canvas fingerprinting was occurring on 5% of the top 100,000
sites, that cookie respawning was still in use on many pop-
ular non-US sites, and that nearly 40% of cookie identifiers
are shared between third-parties. The study further ana-
lyzes how the use of these technologies together increases
the di�culty in achieving a “clean state”.

Several of OpenWPM’s features were essential to both the
evercookie and cookie synchronization measurements. An
evercookie is an identifier that is stored in many locations
which respawns after partial-deletions and cookie synchro-
nization describes the processes by which two parties share
their tracking identifiers. In order to detect these processes
automatically, we first need to be able to create and save an
accumulated browser state from all tests sites. For everookie
analysis, we then need to clear all portions of the state ex-
cept the one we are testing, and revisit each test site to see if
identifiers are respawned in other locations. For cookie syn-
chronization, we simply need to identify which cookie IDs are
shared between two di↵erent domains via network tra�c.

The ability to accumulate a profile of all local browser stor-
age (i.e., cookies, local storage, LSOs), save this profile to
disk, and load only parts of it is supported by OpenWPM’s
persistent and fine-grained profile management. Similarly,
the per-site browser state monitoring allows us to attribute
actions to each individual site without having to make inde-
pendent, isolated measurements on each site. The classifi-

cation of identifiers for both evercookie IDs and cookie sync
IDs is provided by our ID detection algorithm.

Surveillance with cookies. Modern websites often embed
content from many di↵erent hosts. Our own measurements
show that the top 500 Alexa sites include resources from, on
average, 62 unique hostnames each. In an updated version
of a past study of network surveillance [50], we show how the
inclusion of diverse and overlapping subsets on each individ-
ual site enables a passive network adversary to transitively
link between 60-75% of page visits together without any ad-
ditional information. We also show how di↵erent browser
blocking settings and privacy extensions can help reduce,
but not fully eliminate a user’s exposure to surveillance.

To make this measurement, we need to generate user pro-
files that simulate real users as they browse to sites they
would typically visit. We simulate real browsing history by
picking 25 users from the AOL search logs [12], re-running
their searches on google.com, and visiting the top 5 results.
Once the profiles have been created, we need to record all
network tra�c that occurs as the simulated user makes the
page visits. We rely on OpenWPM’s stateful crawls to allow
us to build that profile for all 25 users and make measure-
ments that reflect each user’s exposure to surveillance. The
platform’s plugin support allowed us to also test several real
privacy settings (i.e., blocking cookies and setting the DNT
flag) and browser extensions (i.e. Ghostery[1] and HTTPS-
Everywhere[18]). Similar to the Persistent tracking mech-
anisms study, the ability to recognize persistent identifiers
with our ID detection algorithm was fundamental to all of
the analysis in the study.

Facebook login permissions. Do users understand what
personal information they are giving up when they login
with Facebook? A recent study utilized OpenWPM to col-
lect the permissions requested via Facebook’s federated lo-
gin on the top websites which support the system [51]. This
data was used to provide quantitative support for a user
study examining how well users understand permissions.

This study utilized a preliminary version of our federated
login tool to successfully complete the login procedure from
the sign-in page on 203 of the Alexa top 500 sites that
support Facebook login. Permissions were collected concur-

google.com

rently during the login procedure.

5.2 Security
Two of our studies are about web security. We emphasize
that we don’t aim to be a comprehensive platform for web
security measurement, but some of our features end up being
useful for security measurement as well. For example, our
ability to manipulate tracking cookies was also useful for ma-
nipulating authentication cookies and transferring them be-
tween profiles in order to study secondary auth mechanisms.

HSTS and key pinning misconfigurations. OpenWPM
has been used to conduct the first in-depth empirical study
of two important new web security features, strict transport
security (HSTS) and public-key pinning [28]. This study
identified several errors in the real-world HSTS deployment.
The authors found that “A substantial portion of HSTS do-
mains and nearly all pinned domains leaked cookie values,
including login cookies, due to the poorly-understood inter-
action between HTTP cookies and the same-origin policy.”

This study highlights the advanced plug-in support Open-
WPM provides. Web drivers such as Selenium don’t pro-
vide fine-grained visibility of pages during rendering; rather,
users are only provided a fully-loaded page from which to
extract content. Utilizing a proxy doesn’t provide a full so-
lution either. HTTP GET requests captured by a proxy do
not capture which elements of the page initiated the request.
To solve this, the researchers utilized our platform and cre-
ated a custom browser extension that was installed in each
deployed browser. Across the 10,000 sites surveyed, the ex-
tension recorded and logged all resource calls as the page
was loaded to capture dynamic resource loading. The re-
searchers chose to only partially utilize the automated login
capability due to the incomplete coverage. Since the number
of sites they needed to log into was small, they were able to
manually input credentials.

Secondary authentication mechanisms. Authenti-
cation cookies provide a convenient access method for on-
line services yet, if compromised, can be as damaging as
a stolen password. This allowed us to conduct a measure-
ment with OpenWPM that analyzed which sites might de-
tect stolen cookies through the use of secondary authentica-
tion methods. For example, if a server receives an authenti-
cation cookie from a user who suddenly changes IP address
or browser fingerprint, the server might determine that the
user’s authentication cookies were compromised.

This study leveraged several advanced capabilities of Open-
WPM. We installed the iMacros browser extension to con-
duct partially automated logins across 50 sites. Once au-
thenticated, the browser cookies were saved through the
platform’s profile management. The browser fingerprint was
then altered before again automatically logging in to the
site. We varied the fingerprint by logging in to the service
provider from a residential ISP (e.g., Verizon), then con-
necting through the Tor network or an EC2 node acting
as a proxy and refreshing the browser. These capabilities
of OpenWPM allowed us to simulate a passive man-in-the-
middle who intercepts a user’s authentication cookies for
authentication from the attacker’s machine.

Not only did this study determine that many sites fail to
perform any secondary authentication methods, but it found
that Twitter was using a single, unchanging authentication
token for each user across sessions. Our findings of weak-
ness aren’t without exceptions: the online US banking site
we tested successfully identified non-US IP addresses and
locked the account immediately after attempting to reau-
thenticate. In some cases, social media and email sites iden-
tified Tor IP addresses and would subsequently present the
user with additional security questions following a password
login. We omit the full details for lack of space. Our findings
are similar to other recent work [44].

5.3 Personalization
Online news personalization. The level of personaliza-
tion occurring on news outlets is a concern often raised in
the discussion of privacy, filter bubbles and their potential
e↵ects. However, the current level of measurement equates
to anecdotal evidence or manual study [55]. As proof-of-
concept of the e↵ectiveness of our generalized infrastructure,
we performed an automated, rigorous measurement across
nine major news sites of whether a user who browses a spe-
cific category of news articles might be presented more arti-
cles in that category.

Measuring news personalization required creating a variety
of profiles that mimic the past browsing behavior of users
interested in specific topics. In order to maximize the likeli-
hood of observing personalization, we created extreme pro-
files of users who browse one specific topic (e.g., sports)
within each news publisher. We also maintained a control
profile which contained no history or cookies at initialization
and was not configured to prevent cookie setting or caching.
We measure personalization by computing the skew in ob-
served article categories toward or away from the training
category. For example, a browser instance trained on sports
articles might see an overall increase in the number of sports-
related articles recommended, or it might see a decrease and
a corresponding increase in other categories.

To summarize our results, we found no statistically signif-
icant deviations of trained instances from control instances
in article category distribution for front page visits. On the
article pages, we find statistically significant levels of person-
alization in many of the news boxes from content recommen-
dation engines such as Outbrain[2] and Taboola[3]. How-
ever, the levels of personalization are quantitatively small,
with a level of change between the control and measurement
set of articles ranging from -19.2% to +10.6%. Thus, we saw
both personalization toward and away from the training cat-
egory. To be able to estimate these small e↵ect sizes and re-
ject the null hypothesis, we used large sample sizes amount-
ing to thousands of article views for each publisher/category
pair.

Illustrating the scale of studies that are possible with Open-
WPM, the study created 432 user profiles trained on 255,790
page visits and conducted a measurement of 25,704 articles
with 14 synchronized browser instances at a time, something
that would have simply been infeasible previously. Further-
more, personalization is di�cult to detect and requires rig-
orous experiment methods which OpenWPM provides sup-

port for out of the box. Lastly, while OpenWPM’s con-
tent extraction features were useful, we also wrote a study-
specific content extraction module that located and stored
news headlines and articles for o✏ine topic classification.
Without the combination of the advanced capabilities of
OpenWPM, a significant level of manual e↵ort would have
been required to execute a similar study, likely limiting the
scale to a single news publisher.

6. CONCLUSION
Web privacy measurement has the potential to play a key
role in keeping online privacy incursions and power imbal-
ances in check. To achieve this potential, WPM tools must
be made available broadly rather than just within the re-
search community, but without losing scientific rigor. In
this work, we’ve tried to bring this ambitious goal closer to
reality. We are happy to report that OpenWPM is currently
being used independently for studies by multiple groups out-
side our own institution.

We are currently expanding our results in several directions.
We are continuing to add capabilities to OpenWPM as we
have highlighted thoughout Section 4, and several new stud-

ies are in progress. We plan to explore the use of OpenWPM
in conjunection with other tools such as XRay, AdFisher,
and crows-sourcing platforms.

OpenWPM is part of the broader Princeton Web Trans-
parency and Accountability project. We’ve established part-
nerships with the Common Crawl project, for running fully
web-scale studies, and with the EFF and Ghostery (via an
academic license) with the aim of bringing measurements re-
sults into browser privacy tools. In the long run, we plan to
operate continual, automated crawls and publish measure-
ment results so that privacy practices of various entities can
be monitored over time — a “web privacy census.”

7. ACKNOWLEDGEMENTS
We’re grateful to numerous researchers for useful feedback.
In no particular order: Joseph Bonneau, Edward Felten,
and Matthew Salganik at Princeton, Fernando Diaz and
many others at Microsoft Research, Franziska Roesner at
UW, Gunes Acar and Marc Juarez at KU Leuven, Vin-
cent Toubiana at CNIL, France, Lukasz Olejnik at INRIA,
France, and the participants of the Princeton Web Privacy
and Transparency workshop.

Targets Infrastructure Variable

Paper A
u
to
m
at
io
n
a

In
st
ru
m
en
ta
ti
on

C
ro
w
d
-s
ou

rc
ed

D
is
tr
ib
u
te
d

L
o
ca
ti
on

U
se
r-
ag

en
t

D
em

og
ra
p
h
ic
s

In
te
re
st
s

P
ri
va
cy

T
o
ol
s

S
ca
le

Leakage of PII via OSN (’09) [31] PII leaks M* LHH
Privacy di↵usion on the web (’09) [30] Tracking: cookies F,PS Proxy 1.2K sites
Challenges in measuring (’10) [25] Personalization: ads Proxy • • 730 queries
Flash cookies and privacy (’10) [53] Tracking: cookies, LSOs M* 100 sites
Privacy leakage in mOSN (’10) [32] PII leaks M* Proxy
Flash cookies and privacy II (’11) [10] Tracking: cookies, LSOs M* 100 sites
Privacy leakage vs. protection measures (’11) [29] PII leaks M* Proxy 10 sites
Respawn HTTP Cookies (’11) [41] Tracking: cookies, LSOs UA* • 600 sites
Self-help tools (’11)[38] Tracking: cookies UA* FourthParty • 500 sites
Where everybody knows your username (’11) [39] PII leaks M* FourthParty • 185 sites
Detecting and defending (’12) [52] Tracking: cookies FF, TT TrackingTracker 2K sites
Detecting price and search discrimination (’12) [42] Price discrimination SA, CH, IE, JS Proxy • • • • • 200 sites
Mac users steered to pricier hotels (’12) [37] Personalization: steering •
Measuring the e↵ectiveness of privacy tools (’12) [11] Personalization: ads F, SL •
Websites vary prices (’12) [57] Personalization: prices, deals •
What they do with what they know (’12) [60] Personalization: ads Proxy 10 days
AdReveal (’13) [34] Personalization: ads Proxy, Ghostery • 103K sites
Cookieless monster (’13) [47] Tracking: fingerprinting 10K sites
Crowd-assisted search (’13) [43] Price discrimination F, CH Custom plugin • • • • 600 sites
Discrimination in online ad delivery (’13) [54] Ads M, UA • • 2184 names
FPDetective (’13) [7] Tracking: fingerprinting, JS CR, SL, CJ, PJ Proxy, Browser Code 1M sites
Know your personalization (’13) [35] Personalization: search Custom plugin • • 5K queries
Measuring personalization of web search (’13) [26] Personalization: search PJ • • 120 queries
Who knows what about me? (’13) [36] PII leaks F, PS, SL • • • 1.5K sites
Selling o↵ privacy at auction (’13) [49] Cookie sync, bid prices F, SL • • • • 5K sites
Shining the floodlights (’13) [19] Tracking: cookies, JS F, JS FourthParty • 500 sites
Statistical approach (’13) [22] General tracking F, PY FourthParty • 2K sites
Adscape (’14) [13] Personalization: ads F, SL Custom plugin • 10K sites
Bobble (’14) [61] Personalization: search CH, SL Custom plugin • • • • 1K queries
Information flow experiments (’14) [56] Personalization: ads F, SL Proxy •
Third-party OSN applications (’14) [14] PII leaks F, SL FourthParty • 997 apps
Price discrimination and steering (’14) [27] Price disc, steering PJ • • • • • 16 sites
Price discrimination of airline tickets (’14) [59] Price discrimination CJ • • • • 21 days

aFF = Firefox, CH = Chrome, CR = Chromium, IE = Internet Explorer, SA = Safari, SL = Selenium, JS = JavaScript, PJ =
PhantomJS, PS = PageStats, PY = Python, TT = TrackingTracker, CJ = CasperJS, UA = Unknown automation, M = manual, LHH
= Live HTTP Headers, Asterisk = inferred

Table 2: Overview of prior measurement studies

8. REFERENCES
[1] Ghostery. https://www.ghostery.com/.
[2] Outbrain Content Recommendation Network.

http://www.outbrain.com/.
[3] Taboola Content Recommendation Network.

https://taboola.com/.
[4] Databases

in WRDS - comScore. http://wrds-web.wharton.
upenn.edu/wrds/about/databaselist.cfm, 2013.

[5] Rubin causal model. https://en.wikipedia.org/
wiki/Rubin_causal_model, 2014. [Accessed 11-2014].

[6] G. Acar, C. Eubank, S. Englehardt,
M. Juarez, A. Narayanan, and C. Diaz. The web never
forgets: Persistent tracking mechanisms in the wild. In
Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS 2014), 2014.

[7] G. Acar, M. Juarez, N. Nikiforakis,
C. Diaz, S. Gürses, F. Piessens, and B. Preneel.
FPDetective: dusting the web for fingerprinters.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. ACM, 2013.

[8] J. Angwin. What they know. The
Wall Street Journal. http://online.wsj.com/public/
page/what-they-know-digital-privacy.html, 2012.

[9] S. B. Automation.
Selenium faq. https://code.google.com/
p/selenium/wiki/FrequentlyAskedQuestions, 2014.

[10] M. Ayenson, D. J. Wambach, A. Soltani, N. Good,
and C. J. Hoofnagle. Flash cookies and privacy II:
Now with HTML5 and ETag respawning. World Wide
Web Internet And Web Information Systems, 2011.

[11] R. Balebako, P. Leon, R. Shay, B. Ur,
Y. Wang, and L. Cranor. Measuring the e↵ectiveness
of privacy tools for limiting behavioral advertising.
In Web 2.0 Workshop on Security and Privacy, 2012.

[12] M. Barbaro and T. Zeller. A Face Is Exposed for AOL
Searcher No. 4417749. http://www.nytimes.com/
2006/08/09/technology/09aol.html?pagewanted=

all, 2006. [Online; accessed 10-November-2014].
[13] P. Barford, I. Canadi, D. Krushevskaja,

Q. Ma, and S. Muthukrishnan. Adscape:
Harvesting and analyzing online display ads. 2014.

[14] A. Chaabane, Y. Ding, R. Dey, M. A. Kaafar, K. Ross,
et al. A closer look at third-party OSN applications:
Are they leaking your personal information?
In Passive and Active Measurement conference, 2014.

[15] F. T. Commission.
Google will pay $22.5 million to settle FTC charges it
misrepresented privacy assurances to users of Apple’s
Safari internet browser. https://code.google.com/
p/selenium/wiki/FrequentlyAskedQuestions, 2012.

[16] A. Datta, M. C.
Tschantz, and A. Datta. Automated experiments
on ad privacy settings: A tale of opacity, choice, and
discrimination. arXiv preprint arXiv:1408.6491, 2014.

[17] W. Davis. KISSmetrics Finalizes
Supercookies Settlement. http://www.mediapost.
com/publications/article/191409/kissmetrics-

finalizes-supercookies-settlement.html,
2013. [Online; accessed 12-May-2014].

[18] Electronic
Frontier Foundation (EFF). HTTPS-Everywhere.
https://www.eff.org/https-everywhere.

[19] C. Eubank, M. Melara, D. Perez-Botero,
and A. Narayanan. Shining the floodlights on
mobile web tracking - a privacy survey. W2SP, 2013.

[20] E. Felten. Measurement, policy making, and enforce-
ment panel. Web Privacy and Transparency, 2014.

[21] S. Flaxman, S. Goel, and J. M.
Rao. Ideological segregation and the e↵ects of social
media on news consumption. Available at SSRN, 2013.

[22] M. Franklin. A statistical approach to the
detection of behavioral tracking on the web. Princeton
University, 2013. Undergraduate senior thesis.

[23] A. S. Gerber and D. P. Green. Field
Experiments: Design, Analysis, and Intepretation.
Norton, W. W. and Company, Inc., 2012.

[24] S. Goel. Demographic diversity on the web. http:
//messymatters.com/webdemo/, 2010. Accessed: 2014.

[25] S. Guha, B. Cheng, and
P. Francis. Challenges in measuring online advertising
systems. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010.

[26] A. Hannak, P. Sapiezynski,
A. Molavi Kakhki, B. Krishnamurthy, D. Lazer,
A. Mislove, and C. Wilson. Measuring personalization
of web search. In Proceedings of the 22nd international
conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2013.

[27] A. Hannak, G. Soeller, D. Lazer, A. Mislove,
and C. Wilson. Measuring price discrimination
and steering on e-commerce web sites. 2014.

[28] M. Kranch and J. Bonneau. Upgrading
HTTPS in midair: HSTS and key pinning in practice.
In NDSS ’15: The 2015 Network and Distributed
System Security Symposium, February 2015.

[29] B. Krishnamurthy, K. Naryshkin, and C. Wills.
Privacy leakage vs. protection measures: the growing
disconnect. In Proceedings of the Web, volume 2, 2011.

[30] B. Krishnamurthy and
C. Wills. Privacy di↵usion on the web: a longitudinal
perspective. In Proceedings of the 18th international
conference on World wide web. ACM, 2009.

[31] B. Krishnamurthy and C. E. Wills. On
the leakage of personally identifiable information via
online social networks. In Proceedings of the 2nd ACM
workshop on Online social networks. ACM, 2009.

[32] B. Krishnamurthy
and C. E. Wills. Privacy leakage in mobile online
social networks. In Proceedings of the 3rd conference
on Online social networks. USENIX Association, 2010.

[33] M. Lécuyer, G. Duco↵e, F. Lan, A. Papancea, T. Pet-
sios, R. Spahn, A. Chaintreau, and R. Geambasu. Xray:
Enhancing the webâĂŹs transparency with di↵erential
correlation. In USENIX Security Symposium, 2014.

[34] B. Liu, A. Sheth, U. Weinsberg,
J. Chandrashekar, and R. Govindan. AdReveal:
improving transparency into online targeted
advertising. In Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks. ACM, 2013.

https://www.ghostery.com/
http://www.outbrain.com/
https://taboola.com/
https://en.wikipedia.org/wiki/Rubin_causal_model
https://en.wikipedia.org/wiki/Rubin_causal_model
https://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions
https://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions
http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all
http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all
http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all
https://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions
https://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions
http://www.mediapost.com/publications/article/191409/kissmetrics-finalizes-supercookies-settlement.html
http://www.mediapost.com/publications/article/191409/kissmetrics-finalizes-supercookies-settlement.html
http://www.mediapost.com/publications/article/191409/kissmetrics-finalizes-supercookies-settlement.html
https://www.eff.org/https-everywhere
http://messymatters.com/webdemo/
http://messymatters.com/webdemo/

[35] A. Majumder and N. Shrivastava. Know your
personalization: Learning topic level personalization in
online services. In Proceedings of the 22nd international
conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2013.

[36] D. Malandrino,
A. Petta, V. Scarano, L. Serra, R. Spinelli,
and B. Krishnamurthy. Privacy awareness about
information leakage: Who knows what about me? In
Proceedings of the 12th ACM workshop on Workshop
on privacy in the electronic society. ACM, 2013.

[37] D. Mattioli. On Orbitz, Mac users steered to pricier
hotels. http://online.wsj.com/news/articles/
SB10001424052702304458604577488822667325882,
2012.

[38] J. Mayer. Tracking the trackers: Self-help
tools. https://cyberlaw.stanford.edu/blog/2011/
09/tracking-trackers-self-help-tools, 2011.

[39] J. Mayer. Tracking the trackers: Where
everybody knows your username. https://cyberlaw.
stanford.edu/blog/2011/10/tracking-trackers-

where-everybody-knows-your-username, 2011.
[40] J. R. Mayer and J. C. Mitchell. Third-party

web tracking: Policy and technology. In Security and
Privacy (SP), 2012 IEEE Symposium on. IEEE, 2012.

[41] A. M. McDonald and L. F. Cranor.
Survey of the use of Adobe Flash Local Shared
Objects to respawn HTTP cookies, a. ISJLP, 7, 2011.

[42] J. Mikians, L. Gyarmati, V. Erramilli, and
N. Laoutaris. Detecting price and search discrimination
on the internet. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks. ACM, 2012.

[43] J. Mikians, L. Gyarmati,
V. Erramilli, and N. Laoutaris. Crowd-assisted
search for price discrimination in e-commerce:
first results. arXiv preprint arXiv:1307.4531, 2013.

[44] Y. Mundada, N. Feamster, B. Krishnamurthy,
S. Guha, and D. Levin. Half-baked cookies:
Client authentication on the modern web. 2014.

[45] N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna. You are what you include: Large-scale
evaluation of remote javascript inclusions. In Proceed-
ings of the 2012 ACM conference on Computer and
communications security, pages 736–747. ACM, 2012.

[46] N. Nikiforakis, W. Joosen, and B. Livshits. Privar-
icator: Deceiving fingerprinters with little white lies.

[47] N. Nikiforakis, A. Kapravelos,
W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.
Cookieless monster: Exploring the ecosystem
of web-based device fingerprinting. In Security and
Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013.

[48] F. Ocariza, K. Pattabiraman, and B. Zorn. Javascript
errors in the wild: An empirical study. In Software
Reliability Engineering (ISSRE), 2011 IEEE 22nd In-
ternational Symposium on, pages 100–109. IEEE, 2011.

[49] L. Olejnik, T. Minh-Dung, C. Castelluccia,
et al. Selling o↵ privacy at auction. 2013.

[50] D. Reisman, S. Englehardt, C. Eubank,
P. Zimmerman, and A. Narayanan. Cookies

that give you away: Evaluating the surveillance
implications of web tracking. Manuscript, 2014.

[51] N. Robinson and J. Bonneau. Cognitive disconnect:
understanding facebook connect login permissions. In
Proceedings of the second edition of the ACM conference
on Online social networks, pages 247–258. ACM, 2014.

[52] F. Roesner, T. Kohno, and D. Wetherall.
Detecting and defending against third-party
tracking on the web. In 9th USENIX Symposium on
Networked Systems Design and Implementation, 2012.

[53] A. Soltani, S. Canty,
Q. Mayo, L. Thomas, and C. J. Hoofnagle. Flash
cookies and privacy. In AAAI Spring Symposium:
Intelligent Information Privacy Management, 2010.

[54] L. Sweeney. Discrimination
in online ad delivery. Queue, 11(3), 2013.

[55] N. Thurman and S. Schi↵eres. The future
of personalization at news websites: lessons from a
longitudinal study. Journalism Studies, 13(5-6), 2012.

[56] M. C. Tschantz, A. Datta, A. Datta, and J. M. Wing.
A methodology for information flow experiments.
Technical Report arXiv:1405.2376, ArXiv, 2014.

[57] J. Valentino-Devries, J. Singer-Vine, and A. Soltani.
Websites vary prices, deals based on users’ information.
http://online.wsj.com/news/articles/

SB10001424127887323777204578189391813881534,
2012.

[58] S. Van Acker, N. Nikiforakis, L. Desmet,
W. Joosen, and F. Piessens. Flashover: Automated
discovery of cross-site scripting vulnerabilities
in rich internet applications. In Proceedings of the
7th ACM Symposium on Information, Computer and
Communications Security, pages 12–13. ACM, 2012.

[59] T. Vissers, N. Nikiforakis, N. Bielova, and
W. Joosen. Crying wolf? on the price discrimination
of online airline tickets. HotPETS, 2014.

[60] C. E. Wills
and C. Tatar. Understanding what they do with what
they know. In Proceedings of the 2012 ACM Workshop
on Privacy in the Electronic Society. ACM, 2012.

[61] X. Xing, W. Meng, D. Doozan, N. Feamster,
W. Lee, and A. C. Snoeren. Exposing inconsistent
web search results with bobble. In Passive and
Active Measurement, pages 131–140. Springer, 2014.

[62] C. Yue and H. Wang. A measurement
study of insecure javascript practices on the web.
ACM Transactions on the Web (TWEB), 7(2):7, 2013.

[63] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz,
C. Kruegel, and G. Vigna. The dark alleys of madison
avenue: Understanding malicious advertisements. 2014.

http://online.wsj.com/news/articles/SB10001424052702304458604577488822667325882
http://online.wsj.com/news/articles/SB10001424052702304458604577488822667325882
https://cyberlaw.stanford.edu/blog/2011/09/tracking-trackers-self-help-tools
https://cyberlaw.stanford.edu/blog/2011/09/tracking-trackers-self-help-tools
https://cyberlaw.stanford.edu/blog/2011/10/tracking-trackers-where-everybody-knows-your-username
https://cyberlaw.stanford.edu/blog/2011/10/tracking-trackers-where-everybody-knows-your-username
https://cyberlaw.stanford.edu/blog/2011/10/tracking-trackers-where-everybody-knows-your-username

	Introduction
	Background and related work
	Methodological challenges
	Statistical rigor
	Realistic user simulation
	Practical and ethical challenges

	Measurement Platform
	Requirements
	Browser and driver
	Browser instrumentation
	Platform Requirements

	Design and Implementation
	Advanced capabilities
	Evaluation

	Applications
	Privacy
	Security
	Personalization

	Conclusion
	Acknowledgements
	References

