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Abstract—The standardization process is core to the develop-
ment of the open web. Until 2013, the process rarely included pri-
vacy review and had no formal privacy requirements. But today
the importance of privacy engineering has become apparent to
standards bodies such as the W3C as well as to browser vendors.
Standards groups now have guidelines for privacy assessments,
and are including privacy reviews in many new specifications.
However, the standards community does not yet have much
practical experience in assessing privacy.

In this paper we systematically analyze the W3C Battery
Status API to help inform future privacy assessments. We begin
by reviewing its evolution — the initial specification, which only
cursorily addressed privacy, the discovery of surprising privacy
vulnerabilities as well as actual misuse in the wild, followed
by the removal of the API from major browser engines, an
unprecedented move. Next, we analyze web measurement data
from late 2016 and confirm that the majority of scripts used the
API for fingerprinting. Finally, we draw lessons from this affair
and make recommendations for improving privacy engineering
of web standards.

I. INTRODUCTION

The Battery Status API offers an interesting and unusual
case study of privacy assessment in the web standardization
process. The specification started with a typical progression:
it went through a few iterations as a draft, was quickly imple-
mented by multiple browser vendors, and then progressed to
a candidate recommendation — one which characterized the
privacy impact as “minimal”. Several years later, after it was
implemented in all major browser engines and was nearing
finalization, researchers discovered several privacy vulnerabil-
ities as well as misuse in the wild. In an unprecedented move,
two of the three major browser engines removed support for
the API and another browser moved to an opt-in model. In this
paper, authored by several of the researchers who discovered
the privacy problems, we reflect on these events, present new
empirical evidence of misuse, and extract recommendations
for privacy reviews in future standards.

Before 2013, there were no formal review processes at
the major standards bodies to address privacy during the
design and standardization of web features. This is reflected
in the lack of privacy or security considerations in many past
specifications. However, the standards community has recently
made numerous substantial changes to address privacy during
the early stages of feature development. In 2013 the IETF
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formally defined recommendations for privacy assessments
during the development of internet protocols [1]. The W3C
has also invested considerable resources into the creation of
specialized methodologies for such privacy assessments [2],
[3]. This includes taking public stances on privacy expectations
[4] and defining new groups and processes to evaluate privacy
[5], [6], [7]. Even the frameworks used during specification,
development, and publishing have been updated to encourage
all specification authors to include privacy and security review
sections [8], [9].

These recent advances in privacy review are timely, as new
and proposed web features will provide websites with much
deeper access to the user’s device and environment, especially
on smartphones and Internet-of-Things (IoT) devices. Ex-
amples include Bluetooth connectivity [10], low-level device
sensors such as ambient light, acceleration, and vibration [11],
[12], and even the user’s interpupillary distance, in the context
of Virtual Reality [13].

But why should standards consider privacy at all, rather
than leave it to browser vendors? Perhaps the market will
then allow each user to choose a browser that provides his
or her preferred trade-off between privacy and functionality.
This argument is beguiling but simplistic — standards must fix
many design choices to ensure interoperability, and some of
these will inevitably impact privacy [1]. Indeed, there are many
examples of standards that impede efforts by browser vendors
to improve privacy without causing breakage [14]. Further,
standards allow setting a privacy floor across implementations.
This helps avoid a race to the bottom, considering that privacy
might be a “market for lemons” [15] and is susceptible to
numerous behavioral biases [16].

In this paper we study the privacy engineering aspects [17]
of the Battery Status API, with a focus on the standardization
and implementation process. Specifically,

1) We conduct a systematic case study of the Battery Status
API (Section III).

2) We provide new measurements of Battery Status API
use on the web (Section IV).

3) We extract useful privacy engineering practices and
provide recommendations to improve the design process
(Section V).



We hope our work will be useful to standardization bodies,
browser vendors, privacy engineers, researchers, and web de-
velopers. We seek to enrich Privacy Impact Assessment (PIA)
methodologies, with possible applications to other domains
including IoT and mobile APIs.

II. BACKGROUND AND RELATED WORK

The W3C standardization process. The W3C employs
a maturity level model in the standardization process [18].
Specifications start as a community group Working Draft and
may undergo several revisions while the scope and content is
refined. Once the specification is ready for a final review by
a wide audience, it will progress to a Candidate Recommen-
dation. The W3C formally calls for implementations at this
stage, although in practice they may already exist. Feedback
from the Candidate Recommendation and experience gathered
from implementations is used to refine the specification further.
If the specification requires no substantive changes it will
progress to a Proposed Recommendation. After a final set
of endorsements a specification will progress to a full W3C
Recommendation.

The lengthy standardization process is consensus-driven.
The stakeholders of a standard are generally organized into
Working Groups, typically comprised of employees of browser
vendors and other technology companies. To reach consen-
sus, all members must agree on a decision. Other Working
Groups, such as those specializing in privacy, accessibility,
or web architecture may give their input on aspects of the
specification relevant to their mission. Additionally, the speci-
fication Working Group must provide evidence of wide review,
which includes reviews by a number of external parties: the
public (i.e. researchers) and NGOs (some of whom are W3C
members).

Privacy reviews often happen during the draft stage, al-
though the depth of reviews can vary. As of 2017, the official
W3C Process Document [18] does not require a privacy
review. In practice, reviews are often performed prior to a
draft entering the Candidate Recommendation level. A privacy
consideration section can be normative, in which the state-
ments included are requirements that an implementation must
follow to be compliant with the specification. Alternatively,
the section can be non-normative, which is used to provide
extra information, context, or recommendations that an imple-
mentation is not required to adhere to.

The W3C’s Technical Architecture Group (TAG), which
aims to build consensus on principles of web architecture,
published the Security and Privacy Self-Review Questionnaire
[7]. The questionnaire exists to help authors, TAG, and others
assess the privacy and security impacts of a specification.
It recommends that authors review their specifications under
several different threat models and asks a series of questions
related to data access and quality. The W3C also has the
Privacy Interest Group (PING), which provides guidance and
advice for addressing privacy in standards [5].

W3C privacy assessment practices and requirements.
Privacy reviews in specifications often focus on how the pro-

posed design impacts web tracking. Past studies have shown
that trackers frequently use many browser technologies to track
users: by using stateful mechanisms like cookies, localStorage,
and Flash storage to respawn cleared identifiers [19], [20],
[21], [22], using “enriched” headers that contain tracking IDs
injected by ISPs [23], and by identifying a device solely by its
properties, i.e. device fingerprinting [24], [25], [26], [27]. The
W3C’s TAG has identified these advanced tracking behaviours
as “actively harmful to the Web, because [they are] not under
the control of users and not transparent” [4].

In this case study, we examine how the Battery Status API
can be used to fingerprint devices (Section III-C). Device
fingerprinting is the process of identifying a device by its set
of features, rather than by setting a persistent identifier on the
device. The effectiveness of tracking increases as a device’s
feature set is more unique. Past studies have demonstrated
that a majority of both desktop and mobile users have a
unique fingerprint [28], [29]. In response to fingerprinting
concerns, the W3C’s PING released a Working Group Note to
provide guidance to specification authors on how to address
and mitigate fingerprinting in their specifications [30].

When data is identified as potentially sensitive, such as that
which relates to the user’s device, behavior, location, or en-
vironment, various W3C specifications have applied different
restrictions on access to that data. Some specifications have
made the data available only in the top level browsing context
(i.e. where access from third-party scripts is limited) [31],
and others provide data only in a secure context (i.e. among
other restrictions, requiring TLS) [32]. This type of data access
also frequently requires user permission before any potentially
sensitive information is made available. The Web Permissions
API is a draft specification of a mechanism that allows users
to manage these types of permissions in a user-friendly way
[33].

Past privacy assessment research. Several studies have
examined how privacy assessments are conducted as part of
the specification process. Nick Doty identifies and addressees
the challenges of privacy reviews in standardization bodies
[2]. Doty describes the history of security and privacy con-
sideration sections in Request for Comments (RFC), IETF
specifications, and W3C specifications. RFC 6973 describes
how design choices in internet protocols may impact privacy,
and provides guidelines for drafting of Privacy Considerations
sections in RFC documents [1]. Similarly, Frank Dawson
describes a methodology for drafting the privacy considera-
tions sections of W3C standards [3]. Dawson highlights the
importance of privacy assessments during each stage of a draft
specification and the need for an open process to incorporate
the findings of external research.

III. CASE STUDY: BATTERY STATUS API
A. API specification

The Battery Status API is a browser mechanism that pro-
vides access to the power management information of a device
[34]. An example use case listed in the W3C specification
is responding to low battery levels. For instance, an online
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word processor might auto-save more frequently when the
battery is low. The API provides the following information:
the battery charge 1evel (e.g. 0.43 when the battery has 43%
remaining power), the charging status (whether or not the
device is charging), the time in seconds to a full discharge
(dischargingTime; when discharging) or a full charge
(chargingTime; when charging).

In April 2011, the Battery Status Event Working Draft
first described how a website can access battery information
[35]. The specification was reworked into the Battery Status
API in November 2011 [36] and progressed to a Candidate
Recommendation in May 2012 [37]. This version identified a
“minimal impact on privacy or fingerprinting”, but suggested
“the user agent can obfuscate the exposed value in a way
that [websites] cannot directly know if a hosting device has
no battery, is charging or is exposing fake values.” [38]. This
shows that although the specification authors felt the privacy
impact was minimal, they felt there was enough of a risk that
user agents (browsers) may want to hide a user’s true battery
status.

B. Adoption by browser vendors

The first implementations of the Battery Status API were
in 2012 by Firefox [39] (mobile and desktop) and WebKit
[40]. Chrome' also started an implementation in 2012 that
was never completed, citing a general lack of interest and
convincing use cases [41]. Chrome later removed and re-
implemented it in 2014 on both mobile and desktop [41].
Other browsers based on Chrome’s Blink engine supported
the API soon after, such as Opera in 2014 [42]. This level
of implementation fulfills W3C requirements of having at at
least two independent implementations prior to finalization of
a specification [18]. For a summary of support by additional
browsers, see Table 1.

C. Discovery of privacy vulnerabilities

In 2015 Olejnik et al. [43] examined the W3C specification
and the browser implementations of the API and found several

'Chromium and Chrome are both based on the Blink rendering engine and
expose the same Battery Status API. We refer exclusively to Chrome for the
remainder of the paper but our analysis is applicable to both browsers.

privacy vulnerabilities. They showed that the API can be used
to track users, both by using the status readouts as short-term
identifiers and by using repeated readouts to reconstruct the
battery capacity on certain platforms.

Battery status readouts made users of certain platforms
vulnerable to tracking across sites by a third-party. The
API’s charge level returns a value between 0 and 1 which
represents the ratio of the current charge remaining to the
maximum capacity. The researchers found that Firefox on
Linux returned a double-precision floating-point value for
charge level, the result of returning the operating system’s
value directly without truncating the result. This means that
there is a large number of possible values for the charge
level. Thus, if a tracker were to see the same charge level
readout on two different sites at the same instant (or within
a short time window), it gives the tracker evidence that the
page visits were from the same device. This is true even if the
user cleared cookies between the two visits or used different
browser contexts for the two visits, such as regular versus
private browsing.

The researchers further pointed out that short-term tracking
was possible even on platforms which didn’t expose the high-
precision charge level, although it was less effective. On
platforms other than Firefox on Linux, the battery charge level
was just two significant digits. However, by combining the
charge level with dischargeTime and chargeTime the
researchers estimated the possible number of states to be on
the order of millions under normal operating conditions. Thus,
a tracker could still conclude that two page visits with the
same status readout is likely the same device, particularly if
it coupled that measurement with the device’s IP address.

Finally, the researchers showed that the double-precision
readouts for Firefox on Linux enabled a more sophisticated
attack in which a site could recover the battery capacity.
The attack works by reading the device’s current charge level
and calculating which possible battery capacities could result
in that charge level based on how the underlying operating
system battery library calculates charge level. As the tracker
makes more readings, it decreases the number of possible
battery capacity values that could result in the observed
sequence of charge levels. In the end, a tracker could recover



the actual battery capacity, and use that as a static identifier
for the device. This capacity could also be included alongside
other device properties in a broader device fingerprint.

D. Initial privacy improvements by browser vendors

In response to the 2015 report [43], Firefox fixed the
precision of the battery level readout to two significant digits
for all platforms [44]. Chrome did not return high precision
readouts on Linux because of an implementation difference.
However, had Chrome used a high precision source it would
have exhibited the same behavior. To prevent this, Chrome
preemptively capped the precision to no more than 2 digits
on all platforms [45]. The W3C specification was amended
[46] with non-normative privacy recommendations. Notable
additions are:

1) data minimization — avoiding the exposition of high

precision readings of battery status information

2) user control — optionally making the API subject to

browser permissions that may require prompting the user
prior to the use of the API

3) incognito support — disabling the API in private brows-

ing modes

4) transparency — informing the user when the API is and

has been in use

This response prevents the battery capacity from being
recoverable and lessens the usefulness of status readouts as
a short-term identifiers. However, even with reduced precision
the battery status output will still provide additional identifying
information that can be used to fingerprint and re-identify a
device over short time intervals.

E. Discovery of misuse on the web

Englehardt and Narayanan measured the prevalence of
tracking and fingerprinting techniques on the Alexa top 1
million websites in January 2016 [27]. During manual exami-
nation of automatically identified fingerprinting scripts, they
found two scripts, together present on 22 sites, that used
battery status as part of a device fingerprint. This finding
confirmed that battery status was being used to fingerprint
devices in the wild. In Section IV we present an automated
analysis of the Alexa top 50,000 to audit the use of the API
in late 2016.

One script, served by lynxbroker.de, retrieves only the cur-
rent charge level of the device. The other script, served by ad-
score.com, queries all properties of the BatteryManager
interface, including the current charging status, the charge
level, and the time remaining to discharge or recharge. Both
scripts combine the retrieved battery information with other
identifying properties of the device, such as the canvas finger-
print> or system fonts, to create a device fingerprint.

FE. Discovery of second-order privacy concerns

Until May 2016, the primary privacy concern of the API was
its usefulness for online tracking. In May 2016, Uber disclosed

2For a description of canvas fingerprinting see [26]

its finding that users with a low battery are more willing to pay
higher prices for a ride (i.e. more likely to book a ride during
surge pricing) [47]. This sparked concerns that Uber or other
companies could misuse battery status information to increase
prices for users with a low battery level [48], [49]. Mozilla
cited these second order privacy concerns on W3C mailing
lists during their initial discussions of whether to remove or
restrict the API [50]. Materials obtained in a Subject Access
Request confirm that Uber indeed collects the device battery
level for use in fraud detection [51].

G. Removal of the API from browsers

As summarized in Table I, support for the Battery Status
API has tumbled in response to privacy concerns. At its peak
in 2016, the API was implemented in the engines supporting
Firefox, Chrome, and Safari (though it was disabled in Safari).
In addition, other browsers built on the major engines, such
as Opera and the Yandex Browser, also exposed the API to
the web.

In October 2016 Mozilla announced it would remove access
to API by web content in Firefox 52 [59]. The API is now
restricted to internal browser code, and may eventually be
exposed to WebExtensions-based browser extensions [52]. In
March 2017 Firefox 52 was released with the API removed
[53]. Following Mozilla’s decision, WebKit, the underlying
engine behind Safari browser, removed the Battery Status API
from its source tree [54].

As of March 2017, Chrome developers have not provided an
official stance on whether or how they will change the API.
It is possible they are considering placing it behind a user
permission, as evidenced by the choice of bug component?
for the relevant bug [55]. Microsoft Edge continues to have
the API on its feature wishlist [56]; as of March 2017 there
is no indication of a change.

Other browsers based on these engines could also restrict
access to the API if desired. One such example is the Yandex
Browser (built on the Blink engine), which now spoofs a
fully charged status until the user explicitly enables the API
using the appropriate browser setting [58]. Yandex has limited
market share, but we include it in the table to show the
versatility of responses by browser vendors.

Browser vendors regularly make privacy-related changes
and continually deprecate unused and insecure features. How-
ever, the removal of an entire API in response to privacy
concerns is unprecedented. We verified that this type of feature
removal has not happened before by checking a website which
tracks browser changes for compatibility purposes®.

H. The future of the API

As of March 2017, it is unclear how the specification and
remaining implementations will progress. Since the API was
implemented in both Chrome and Firefox in 2016, it fulfilled
the W3C requirement of two interoperable implementations
[18]. Thus, despite only having one current implementation

3Blink > Permissions API
4www.fxsitecompat.com



Browser Engine API Support (2016) Current API Support (2017)
Firefox Gecko Initial support since version 10 [39] Inaccessible to web content [52] [53]
Safari WebKit Not enabled. WebKit support since 2012 [40] WebKit removed [54]
Chrome Blink Supported since version 38 [41] Permissions under consideration [55]
Edge EdgeHTML Not supported. Considered [56] Not supported. Considered [56]
Yandex Blink Supported Spoofing by default, opt-in [57], [58]

TABLE I: API support in various browsers and privacy strategies employed.

in 2017 (i.e. Chrome), the specification could progress to a
W3C Recommendation. If there isn’t sufficient interest by
the authors to continue the specification, it can be published
as a W3C Note, which would signify the end of active
development by the W3C. The specification authors have
suggested restricting access to the API to secure, top-level
browsing contexts as an additional step to the privacy risks
associated with the API [60].

IV. USE AND MISUSE OF THE API IN THE WILD
A. Statistics on usage in the wild

We measured the use of the Battery Status API on the
homepages of the Alexa top 50,000 sites in November 2016°
using OpenWPM [27]. We found that in total, the API was
used by 56 distinct parties on 841 sites. The majority of this
usage was by third parties — 33 third parties on a total of 815
sites.

We manually classified these 33 scripts, all distinct, to
determine how the feature was being used around the time
of its removal. We build on the fingerprinting classification
methodology outlined in [27]. We classify a script as benign if
it uses the battery status to do things we feel the API designers
intended to support, such as performance and diagnostic mea-
surements. We classify a script as tracking if it uses the API for
device identification, whether for fingerprinting, analytics, or
fraud detection. (We elaborate on intended versus unintended
use in Section IV-B.)

We found 16 third parties using the API for tracking, 11 of
which use it as part of a device fingerprint. An additional
8 third parties use the API for benign purposes. For the
remaining 9 third parties, we were unable to classify the usage,
either due to script obfuscation or vagueness. Scripts from the
16 trackers are present on 347 sites (or around 48% of sites
on which we classified API use). The benign uses of the API
were primarily from two third parties: YouTube, where the
API was used in performance metrics for embedded videos,
and Boomerang®, a performance measurement library.

B. Representative examples of misuse

As a representative example of misuse, consider the finger-
printing script’ served by augur.io, a provider of device recog-

5Since Mozilla and WebKit announced their intent to remove the API in
October 2016, it is possible some sites or scripts could have changed their use
of it in response to that news. We believe a 1 month time window is small
enough that this is unlikely to have a significant effect on our results.

Shttps://soasta.github.io/boomerang/doc/

TLocated at http[s]://cdn.augur.io/augur.min.js

nition services whose marketing material advertises “cookie-
less tracking”. The script collects a large number of device
properties: the device’s fonts, plugins, WebGL properties,
screen information, processor information, whether or not the
device is blocking ads, whether or not the device is blocking
cookies, and more. From the Battery Status API, the script
collects the current charge level and combines it with the
other device properties. The script sends a heavily obfuscated
payload back to Augur’s server.

We discovered Augur’s use of the Battery Status API for
fingerprinting on 16 of the top 50,000 sites measured. In the
November 2016 Princeton Web Census data [27] we found
that 166 sites of the top 1 million embed the script on their
homepage. Several notable sites are glasses.com, a major
retailer of eyeglasses, libertytax.com, a tax preparation service,
and proactiv.com, a major acne treatment provider®.

While this example of misuse is clear cut, others are harder
to categorize. A script by Riskified, a provider of fraud
detection services for e-commerce, appears to use Battery-
related attributes as a part of a user reputation score, but
does not seem to fingerprint the user. Even scripts that collect
device fingerprints may not necessarily use them tracking and
behavioral profiling — another use case is to augment authen-
tication [61], which would presumably meet fewer objections
from users. In particular, the Battery Status API, due to its
time-varying nature, can be used in continual authentication
[62]. Regardless, all such uses appear to be unintended by
the authors of the W3C specification, as they do not pertain to
power management, and an analysis of mailing list discussions
supports this interpretation.

C. A retrospective look at vendor response

Nearly half of the Battery Status API use we classified
was for user profiling or identification — a use case the API
designers did not intend to support. When measured in terms
of distinct scripts rather than distinct sites, that fraction rises to
two-thirds. Note that our measurement is conservative; parties
which collect battery status information through performance
or feature detection libraries can also use that information to
track users, but we do not make this assumption.

At the time of Firefox’s and WebKit’s decisions to remove
the API, the preliminary evidence suggested that it was being
misused in the majority of cases [63]. Mozilla’s discussion
thread cites two specific uses: the research described in
Section III and the Boomerang performance library [63]. The

8 As of March 2017, proactiv.com no longer embeds the script



empirical data presented here suggest that use is indeed split
between gathering performance metrics and tracking users. We
found no additional categories of use, and confirm that the
examples presented in the discussion thread reflect the broader
usage on the web.

V. LESSONS LEARNED & RECOMMENDATIONS

Based on insights from our case study, we extract a set of
good privacy engineering practices and make several concrete
recommendations on how standards bodies can improve the
standardization process. We draw from our research, our
participation in standardization efforts, our assessments of
specifications in the draft phase, as well as a review and tests
of experimental web browser features.

A. Information exchange between vendors and researchers is
essential

Research can reveal theoretical privacy risks and their
exploitation in the wild; it can also provide data on the usage
of features on the web. Standards-based platforms such as
the web are more conducive to research, and therefore attract
more of it, compared to proprietary platforms. Further, when
implementations are open-source, knowledge propagates not
just from researchers to vendors but also among vendors.

Our case study illustrates these themes and their beneficial
effects on privacy. After Firefox was reported to return high-
precision values on Linux (Section III-C), both Firefox and
Chrome fixed the bug. Note that although Chrome did not
exhibit the vulnerability, it chose to preemptively restrict
the precision of the readout to prevent the possibility. This
illustrates knowledge propagation between vendors, sparked
by research results. Similarly, the specification was updated
to include a recommendation to avoid high-precision readouts
(Section III-D).

Still, the specification process can benefit from a deeper
connection to research. Deliberate attempts to break the pri-
vacy assumptions of specifications should be actively incen-
tivized — perhaps by funding attack research, or by organizing
a forum for academics and researchers to publish their privacy
reviews.

B. The specification process should include a privacy review
of implementations

On the modern web, proposed features often get deployed
rapidly. At the time a specification is drafted, initial imple-
mentations are typically available in the development versions
of browsers. By the time the spec is finalized, several vendors
may already fully support a feature; in fact, the W3C requires
at least two implementations to exist before official recom-
mendation. We recommend that specification authors study
implementations to prepare higher quality privacy assessments.
Implementations enable field testing of theoretical attacks and
can be examined for potential API misuses.

With the Battery Status API, the privacy risk stemmed
from a difficult-to-predict interconnection of software layers,
namely the browser acquiring information from the operating

system in order to supply it to a web script. Such a risk is
difficult to predict during the design phase, but becomes much
easier to identify with access to an implementation.

In contrast to the Battery Status API, consider the Ambient
Light Events API, which provides access to the light level of
the device’s surroundings. The specification was examined at
the API design level, the implementation was tested, and the
source code was reviewed” — all as part of the review process.
Issues identified at the implementation level led both Chrome
and Firefox to address a rounding issue related to the light
level data [64], [65].

C. API use in the wild should be audited after implementation

In removing the Battery Status API from Firefox, Mozilla
was influenced by the paucity of legitimate uses of the API in
the wild [63]. This underscores the importance of analyzing
the early use of an API after deployment. Measurement
studies have continually shown that fingerprinting scripts are
often early adopters of a new API [27], [26]. The benefits
of doing an early audit are two-fold: misuses of the API
that weren’t found during the privacy assessment may be
discovered, and any uncovered vulnerability can be fixed at
the specification level before web compatibility and breakage
become a concern.

In the past, fingerprinting abuse in the wild has been
primarily measured by the academic research community [27],
[26], [24], [25]. As research on fingerprinting starts to lose its
novelty, academic researchers may lose the incentive for fre-
quent measurements of fingerprinting abuse. As a replacement,
we suggest measurement through built-in browser probes or a
dedicated web crawling infrastructure run by browser vendors
or privacy advocacy groups.

D. Specification authors should carry out privacy assessments
with multiple threat models

Our case study shows how a seemingly innocuous mecha-
nism can introduce privacy risks. The original 2012 specifica-
tion of Battery Status API characterized the fingerprinting risk
as “minimal”, but did not include any analysis of that risk [38].
An enumeration of the possible fingerprinting approaches,
even if minimal in expected effectiveness, may have helped
avoid the blind spot. We recommend that if any privacy vulner-
ability is identified, possible exploitation should be modeled
and analyzed in detail. Privacy assessment methodologies must
evolve to keep abreast of the growing technical complexity of
web APIs.

The case study shows the importance of assessing the data
quality requirements of APIs, as unnecessarily precise data
may expose users to unforeseen privacy risks. It also shows the
importance of data minimization as a precaution against unex-
pected future misuses. Indeed, the Battery Status vulnerability
served as a motivating example of these strategies in a W3C
draft recommendation on browser fingerprint minimization
[30].

Lukasz Olejnik participated in this effort as a W3C Invited Expert.



Specification authors must also enumerate and analyze
all relevant threat models. Some implementers such as the
Tor browser operate under much stricter threat models. For
example, most implementers may find it acceptable to reveal
the user’s operating system through a new API. But not the
Tor Browser, as it attempts to maintain a uniform fingerprint
across all devices [66].

E. Avoiding over-specification supports innovative privacy
solutions

W3C specifications are expected to be well defined, but do
allow implementers significant leeway. We recommend that
standards exploit this flexibility to set a privacy floor yet leave
room for innovative privacy solutions by implementers. Over-
specification may have the unintended effect of rendering some
privacy solutions uninteroperable with the standard or with
other web features.

Indeed, implementers have employed novel strategies to
mitigate the privacy risks of the Battery Status API (Sec-
tion III-G). Yandex, which reports that the battery is fully
charged, effectively disables the API by default. A user may
choose to offer websites battery information in an explicit
opt-in manner [57]. This opt-in mechanism is also used for
the Vibration API [12], possibly addressing potential misuses
[67], and giving users a consistent privacy control experience
across APIs. In contrast, Firefox removed access to the entire
API from web content, but allowed the API to be accessible
internally and to addon-sdk extensions. This allows the API to
still be used by privileged code while preventing abuse from
untrusted code.

E. Specifications should provide guidance for web developers,
not just browser vendors

Specifications should not only identify points of privacy
concern for browser vendors and other implementers, but
should also provide useful guidance for web application
developers when possible. Web developers are ultimately
the end consumers of new features and are responsible for
complying with local data protection regulations. To assist
these developers, specifications should highlight if a particular
feature provides sensitive data. Including this information in
a specification will also assist browser vendors in properly
documenting the APIs.

The Battery Status API specification currently describes
several privacy risks and suggests mitigation strategies for
browser vendors (Section III-D), but does not provide rec-
ommendations for web developers. Other sensors maintained
by W3C’s Device and Sensors Working Group [68] have
richer data sources and may pose more complex privacy
threats. As such, draft specifications of the Generic Sensors
API [11] and the Web Bluetooth API [10] recommend that
web developers perform a privacy impact assessment prior to
deploying applications which make use of these APIs. It would
be even more helpful to highlight specific risks and providing
concrete advice for mitigation.

A classic example of a standard that provides such detailed
guidance is RFC 7231, which describes the HTTP protocol
[69]. When discussing the disclosure of sensitive information
in URLs, the specification states “Authors of services ought
to avoid GET-based forms for the submission of sensitive data
because that data will be placed in the request-target. Many
existing servers, proxies, and user agents log or display the
request-target in places where it might be visible to third
parties. Such services ought to use POST-based form submis-
sion instead.” The warning has proved useful and necessary,
but of course not sufficient. Indeed, studies have regularly
found leaks of PII through HTTP GET form submissions [70],
[711, [72], which underscores the need for such measurement
research.

VI. CONCLUSION

The removal of an entire browser feature by multiple
vendors in response to privacy concerns is an unprecedented
decision. It underscores the importance of engineering for
privacy throughout the specification, implementation, and web
development stages.

Our work highlights how privacy research can influence
standards and implementations. We hope that our case study
and recommendations will prove useful to standards bodies,
browser vendors, and web developers. We also hope that pri-
vacy impact assessment and other sound privacy engineering
practices will make inroads into nascent domains such as the
Internet of Things.
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