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ABSTRACT
We study the ability of a passive eavesdropper to leverage
“third-party” HTTP tracking cookies for mass surveillance.
If two web pages embed the same tracker which tags the
browser with a unique cookie, then the adversary can link
visits to those pages from the same user (i.e., browser in-
stance) even if the user’s IP address varies. Further, many
popular websites leak a logged-in user’s identity to an eaves-
dropper in unencrypted traffic.

To evaluate the effectiveness of our attack, we introduce
a methodology that combines web measurement and net-
work measurement. Using OpenWPM, our web privacy
measurement platform, we simulate users browsing the web
and find that the adversary can reconstruct 62—73% of a
typical user’s browsing history. We then analyze the effect
of the physical location of the wiretap as well as legal re-
strictions such as the NSA’s “one-end foreign” rule. Using
measurement units in various locations—Asia, Europe, and
the United States—we show that foreign users are highly
vulnerable to the NSA’s dragnet surveillance due to the con-
centration of third-party trackers in the U.S. Finally, we find
that some browser-based privacy tools mitigate the attack
while others are largely ineffective.

1. INTRODUCTION
How much can an adversary learn about an average user

by surveilling web traffic? This question is surprisingly tricky
to answer accurately, as it depends on four things: the struc-
ture of the web, the mapping of web resources to the topol-
ogy of the global Internet, the web browsing behavior of a
typical user, and the technical capabilities and policy re-
strictions of the adversary. We introduce a methodology for
quantifying the efficacy of passive surveillance. Our tech-
nique combines web measurement, network measurement, a
client model (that incorporates user browsing behavior, web
browser policies and settings, and privacy-protecting exten-
sions), and an adversary model.

More specifically, the adversary has the ability to inspect
packet contents and wishes to either track an individual tar-
get user or surveil users en masse. A key challenge for the
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adversary is the lack of persistent identifiers visible on the
network (in Section 3 we discuss why IP addresses are inad-
equate). However, the adversary can observe HTTP cookies
in transit. Indeed, both the NSA and GCHQ are known to
use such cookies for surveillance (Section 3).

Our work starts with three insights. First, the presence
of multiple unrelated third-party cookies on most web pages,
albeit pseudonymous, can tie together most of a user’s web
traffic without having to rely on IP addresses (Figure 1).
Thus the adversary can separate network traffic into clus-
ters, with each cluster corresponding to only one user (or
more precisely, one browser instance). A single user’s traffic
may span more than one cluster if the linking is imperfect.

Second, a significant portion of a typical user’s traffic
traverses U.S. borders even when the user is outside the
U.S. and browses local content. As it turns out, such sites
frequently include third-party resources such as analytics
scripts, tracking pixels, and advertisements from U.S. servers.
This leaves foreign users particularly vulnerable to the NSA’s
wiretaps within the U.S. under the “one-end foreign” rule
(Section 3).

Third, although most popular websites now deploy HTTPS
for authentication, many web pages reveal an already logged-
in user’s identity in plaintext. Thus, an adversary that can
wiretap the network can not only cluster together the web
pages visited by a user, but can then attach real-world iden-
tities to those clusters. This technique relies on nothing
other than the network traffic itself for identifying targets.

Figure 1 illustrates the basis for our work. The adver-
sary observes the user visit three different web pages which
embed trackers X, Y or both. The user’s IP address may
change between visits to each page, though we assume it is
consistent for the request to site A and the request to A’s
embedded tracker X. But there is no way to tie together her
visits to pages A and B until she visits C after which all three
visits can be connected. The unique cookie from X connects
A and C while the one from Y connects B and C. We as-
sume here that the user has visited pages with both trackers
before so that cookies have already been set in her browser
and will be sent with each request. While IP address is a
convenient method to link a request to a first party page
to the corresponding request to an embedded third party
tracker, it is not necessary. In Section 6.1 we show how this
linkage can be achieved even if the IP address cannot be
observed at all or if an IP address is shared by many users.

Contributions. Our contributions are both conceptual
and empirical. First, we identify and formalize a new pri-



Figure 1: Illustration of link between
each of a single browser’s visits to
three first-party pages using two dif-
ferent third-party tracking cookies.
The user accesses the web at three dif-
ferent times, behind three different IP
addresses.
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vacy threat from packet sniffing. While the technique of
utilizing cookies to target users is well known, we formulate
the attack concretely in terms of the following steps: (1) au-
tomatically classifying cookies as unique identifiers (2) using
multiple ID cookies to make transitive inferences and clus-
tering HTTP traffic, (3) geographically tagging the flow of
traffic, and (4) inferring real-world identity from HTTP re-
quest and response bodies. We believe this attack to be the
strongest known way for a passive adversary to utilize web
traffic for surveillance.

Second, we rigorously evaluate the above attack model us-
ing a novel methodology that combines web measurement,
network measurement, a user model, and an adversary model
(Section 4). We simulate realistic browsing behavior and
measure the actual cookie ecosystem. This requires nuanced
techniques along several fronts: (1) a crawling infrastructure
based on browser automation to more closely simulate real
users (2) a model of browsing history derived from real user
behavior, and (3) network measurements to help verify the
robustness of geolocation data.

Third, we present an exhaustive empirical evaluation of
browser privacy settings and privacy extensions to discover
how well a proactive user can protect himself against the at-
tack model we’ve defined. Specifically, we measure how each
of the following privacy measures affect the effectiveness of
the attack: blocking all third-party cookies, blocking only
those from sites not visited directly, setting Do Not Track
(DNT), using Ghostery, and using HTTPS Everywhere.1

Results. We simulate users that make 0 to 300 web
page visits spread out over a 2–3 month period. We consider
users located in several possible countries. For each such set
of visits, we perform clustering using the method described
above and find the “giant connected component.” For non-
U.S. users, we consider an adversary with wiretaps in the
target user’s country as well as one with wiretaps in the U.S.

At a high level, our results show that for a U.S. user, over
73% of visits fall into this connected component. The clus-
tering effect is extremely strong and is robust to differences
in the models of browsing behavior. Clustering even occurs
when the adversary is able to observe only a small, random
subset of the user’s requests.

Non-U.S. locations show a lower degree of clustering due
to a lower number of embedded third-parties: over 59% of
traffic falls into the giant connected component. If the adver-
sary is further restricted to be in the U.S., the clustering level
does drop significantly (12% – 20%), but this is still surpris-
ingly high given that these users are browsing local content.

1DNT: http://donottrack.us/, Ghostery: https://www.
ghostery.com, HTTPS-E: https://www.eff.org/https-
everywhere

Second, we measure the presence of identifying informa-
tion in plaintext among popular (Alexa Top 50 U.S.) web-
sites. 56% of sites transmit some form of identifying informa-
tion in plaintext once a user logs in, whether first name, first
and last name, username, or email address. The majority
of these (42% of websites overall) present unique identifiers
(username or email address) in the clear.

Third, we show that many built-in browser protections are
able to reduce but not fully mitigate the attack. The most
effective blocking solution, Ghostery, still allows 24.2% of a
user’s traffic to be clustered, while alternative solutions have
far less of an impact.

Implications An adversary interested in targeted surveil-
lance can proceed as follows: (1) Either scan for the target’s
identity in plaintext HTTP traffic, or use auxiliary methods
to obtain the target’s cookie ID on some first-party page (2)
From this starting point, transitively connect the target’s
known first-party cookie to other third-party and first-party
cookies of the target. On the other hand, an adversary inter-
ested in en masse surveillance can first cluster all observed
HTTP traffic, albeit at a high computational cost, and then
attach identities to these clusters using the methods above.
Our attacks show the feasibility of either adversary’s goal.

What can the adversary do after attaching an identity to a
cluster of web traffic? First, browsing history itself could be
the information of interest, as in the NSA plan to discredit
‘radicals’ based on browsing behavior, such as pornography
[4]. Second, further sensitive information might be found in
unencrypted web content such as preferences, purchase his-
tory, address, etc. Finally, it can enable active attacks such
as delivering malware to a targeted user [47, 19].

2. RELATED WORK
Our work draws from two previously independent bodies

of research. The first analyzes the privacy implications of
third-party cookies and the second analyzes the ability of a
network eavesdropper to infer sensitive information. We de-
scribe each in turn. To our knowledge, the two sets of ideas
have not been combined before.

Third-party tracking: prevalence and privacy im-
plications. There have been several notable results uncov-
ering or quantifying various types of online tracking: cookies
[28, 45], flash cookies (LSOs) including respawning behavior
[46, 9, 38, 6], and browser fingerprinting [41, 7, 6]. The abil-
ity of trackers to compile information about users is further
aided by PII leaks from first parties to third parties [29, 30,
27] and “cookie syncing”, or different third-party trackers
linking their pseudonymous cookies to each other [42, 6].

While this body of research helps us understand what
trackers themselves can learn, it does not address the ques-
tion we are interested in, which is what an eavesdropper can
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learn through cookies and identifier leaks. The latter is influ-
enced by many additional factors including geographic loca-
tion of the trackers and the adoption of HTTPS by websites.

Yen et al. show how IP, cookies and usernames can be
combined to track devices reliably even when any one of
these identifiers may be individually unreliable [50]. The
similarities to our work are superficial: we study linkage by
an eavesdropper who utilizes third-party cookies rather than
a website that uses its first-party cookies. The goals are also
different: learning users’ web histories vs. ID-ing devices.

There are various client-side tools to block, limit or visual-
ize third-party tracking. These are too numerous to list ex-
haustively, but a sampling include Adblock Plus, Ghostery,
ShareMeNot [1], Lightbeam, and TrackingObserver [2]. Stud-
ies that have quantified the privacy effect of these tools in-
clude [35, 11, 20].

Surveillance: attacks, defenses, and measurement.
While there is a large body of work on what a passive adver-
sary can infer about users, virtually all of it concerns attacks
arising from side-channels in encrypted traffic, particularly
Tor. While Tor is insecure against a global passive adver-
sary, traffic analysis attacks have been studied with respect
to passive and active adversaries with less comprehensive
access to the network [39, 40]. Website fingerprinting al-
lows a local eavesdropper to determine which of a set of web
pages the user is visiting, even if the connection is encrypted,
by observing packet lengths and other features [25, 24, 43].
Other side-channel attacks include timing attacks on SSH
[48], leaks in web forms, [15] and inferring spoken phrases
from VoIP [49].

By contrast, we study users who do not use a properly
configured Tor browser. The adversary’s main challenge is
not linking origin and destination, but rather linking differ-
ent traffic flows to the same (real-world) identity.

Closer to our work, Arnbak and Goldberg studied how
the NSA could actively redirect U.S. traffic abroad, so as
to bring it within broader surveillance authorities [8].2 The
IXMaps tool allows users to interactively view the routes
taken by their traffic and intersection with known NSA wire-
tapping sites [16].

3. BACKGROUND AND THREAT MODEL
In recent years, a combination of technical research, leaks,

and declassifications has provided unprecedented transparency
into Internet surveillance by governments. Some nations,
such as Iran and Bahrain [17], practice near-total Inter-
net monitoring. Others, including the United States and
Britain, have large-scale technical capacity—but subject to
legal limits. This section explains how the National Security
Agency (NSA) and Government Communication Headquar-
ters (GCHQ) have used third-party cookies in their respec-
tive surveillance programs, as well as briefly discusses the
laws that govern surveillance of Internet traffic within the
United States. It then sets out a threat model that moti-
vates our study.

NSA and GCHQ use of third-party cookies. Leaked
documents reflect at least three ways in which the NSA has
used third-party cookies obtained from its Internet inter-
cepts. First, the agency has investigated passively identify-

2It is not apparent whether the NSA has redirected traffic
in this manner, nor is it apparent whether the agency would
consider the practice lawful.

ing Tor users by associating cookies with non-Tor sessions.
Specifically, the NSA attempted to link a Google third-party
advertising cookie between Tor and non-Tor sessions [5].

Second, the agency has an active, man-in-the-middle sys-
tem (“QUANTUMCOOKIE”) that induces cookie disclosure
[5]. Applications include identifying Tor users and targeting
malware delivery.

Third, the agency has used passively obtained cookies to
target active man-in-the-middle exploitation. On at least
one occasion, the NSA offered a Google cookie to single out
a user for exploitation [47].

In addition to these specific applications, HTTP analyti-
cal tools (such as “XKEYSCORE”) incorporate cookie data.
An analyst could easily take advantage of third-party cook-
ies when querying intercepted data [21].

Several leaked documents also reveal two GCHQ programs
for surveilling and targeting users via third-party tracking
data, both from web browsers and mobile applications. One
program,“MUTANT BROTH”, a repository of tracking cook-
ies linked with additional metadata such as IP addresses and
User-Agent strings. This repository is reported to have been
used for targeted malware delivery [19].

The other program, “BADASS”, offers a similar repository
and search interface for querying information leakage from
mobile apps. The system collects and extracts leaked iden-
tifiers, device and operating system details, and additional
information transmitted in plaintext [31].

United States Internet monitoring. The law sur-
rounding NSA authority derives from a complex mixture of
constitutional doctrine, statutory restrictions, and executive
regulation. One emergent property is that, when at least one
party to a communication is outside the United States, it is
eligible for warrantless surveillance.3 “Upstream” intercep-
tion devices, controlled by the NSA and foreign partners,
are exposed to large volumes of this “one-end foreign” In-
ternet traffic. While the details remain classified, it also
appears that a substantial quantity of one-end foreign traf-
fic is temporarily retained. Leaks indicate that at least some
installations of “XKEYSCORE,” a distributed analysis sys-
tem, maintain a multi-day buffer of Internet traffic [12].

Threat model. In developing a threat model, there are
two extremes, neither of which is desirable. The first is to as-
sume that the adversary is all-powerful, as in cryptographic
security arguments. Such a model is both uninteresting and
largely irrelevant to the real world. The other extreme is to
focus too closely on the NSA or GCHQ’s activities. Such a
model may not yield insights that apply to other surveillance
programs and the results may be invalidated by changes to
the respective agency’s programs. We seek a careful mid-
dle ground and arrive at a model that we believe is realistic
enough to influence policy debates and privacy tool devel-
opment, yet general enough for our analyses and algorithms
to be of independent scientific interest and for our results to
hold up well over time.

We consider only passive attacks for several reasons. First,
passive attacks appear to be more powerful than generally

3One-end foreign wireline interceptions inside the United
States are generally governed by Section 702 of the FISA
Amendments Act [22]. Two-end foreign interceptions and
one-end foreign wireless interceptions inside the United
States are generally governed by Executive Order 12333.
Interceptions outside the United States are also generally
governed by Executive Order 12333 [3].



realized, and we wish to highlight this fact. Second, even an
active attack must usually begin with passive eavesdropping.
An adversary must have refined criteria for targeting the
active attack. Finally, almost all active attacks carry some
risk of detection. Passive attacks much easier to mount,
especially at large scale.

We consider a powerful adversary with the ability to ob-
serve a substantial portion of web traffic on the Internet
backbone. The adversary’s view of a given user’s traffic may
be complete or partial. We model partial coverage in two
ways: by assuming that a random subset of the user’s HTTP
requests and responses flows through one of the adversary’s
wiretaps, or that the adversary taps the portion of the user’s
traffic that traverses United States borders. While the NSA
has many interception points outside U.S. borders as well,
the U.S.-only model provides a useful, approximate lower
bound of the agency’s abilities. We also assume that the ad-
versary cannot routinely compromise HTTPS, so cookies or
other identifying information sent over HTTPS are of no use.

The adversary may have one of two goals: first, he might
want to target a specific individual for surveillance. In this
case the adversary knows either the target’s real-world iden-
tity or a single ID cookie known to belong to the target
(whether on a first or third party domain). Second, the ad-
versary might be engaged in mass surveillance. This adver-
sary would like to “scoop up” web traffic and automatically
associate real-world identities with as much of it as possible.

The adversary’s task is complicated by the fact that the IP
addresses of the target(s) may change frequently. A user’s
IP address could change because she is physically mobile,
her ISP assigns IP addresses dynamically, or she is using
Tor. Leaked GCHQ documents show that their search in-
terface even warns analysts to take care when selecting data
on dynamic IPs [19]. Browsing from a smartphone is a case
worth highlighting: Balakrishnan et al. find that “individ-
ual cell phones can expose different IP addresses to servers
within time spans of a few minutes” and that “cell phone IP
addresses do not embed geographical information at reason-
able fidelity” [10].

To link users across different networks and over time, the
adversary aims to utilize first-party and third-party unique
cookies assigned to browser instances by websites. He can
easily sniff these on the network by observing the “Cookie”
field in HTTP request headers and the “Set-Cookie” field
in HTTP response headers. Cookies set by an“origin”(roughly,
a domain) that have not expired are automatically sent as
part of requests to the same origin.

4. METHODOLOGY
In this study, we wish to simulate real users browsing over

a period of time, detect the creation of unique identifiers,
and measure the flow of both unique pseudonymous and
real-world identifiers to adversaries with differing collection
capabilities. We present a summary of our methodology be-
low, and provide detailed descriptions of our measurement
and analysis methodology in the following subsections.

1. Define all clients and adversaries to be studied, according
to the following models:

• client: (location, browsing model, browser configura-
tion) which encodes the client’s geographic and net-
work location, which sites the client visits, and the
browser settings and plugins the client browses with.

• adversary: (location, policy restrictions) which encodes
the adversary’s geographic and network location, and
the policy restrictions on data use and collection.

2. For each unique (user location, browsing model) pair of
interest, generate N simulated browsing profiles as de-
fined in Section 4.1 and create a corresponding client in-
stance for each one.

3. Use the measurement infrastructure (Section 4.2) to sim-
ulate the users defined in Step 2 and collect all network
traffic (i.e. HTTP requests, responses, and cookies). Our
measurements are summarized in Section 4.3.

4. For each (client location, web resource) pair of interest,
determine the geographic path of traffic using the proce-
dure described in Section 4.4.

5. Run the ID cookie detection algorithm detailed in Sec-
tion 4.5 to flag identifying cookies

6. For each (client, adversary) pair of interest, do the follow-
ing for all instances of the client and average the results:

• filter the list of requests based on the geographic loca-
tion and policy restrictions of the adversary using the
geographic mapping created in Step 4.
• run the cookie linking algorithm detailed in Section 4.6

using the ID cookies detected in Step 5.
• report the size of the connected components in the link-

ing graph (as a ratio of total number of visits)
• report the number of sites known to leak real-world

identifiers (Section 4.7) contained in each component.

4.1 Browsing models
We use two browsing models to create simulated user pro-

files. One of our models was a naive one – the user visits
random subsets of the Alexa top 500 sites local to the lo-
cation of the measurement instance. For example, a mea-
surement instance in Japan would sample the Alexa top-500
sites for users in Japan, while a measurement instance in
Ireland would sample from the Alexa top-500 sites for users
in Ireland.

Our other browsing model aims for realism by making
use of the AOL search query log dataset. The dataset con-
tains queries made by 650,000 anonymous users over a three
month period (March–May 2006). We create a browsing pro-
file from a user’s search queries as follows. First, we remove
repeated queries. Next, for every search query performed by
the user, we submit the query to Google search and retrieve
the links for the first five results. Users were selected on the
basis that they performed between 50 to 100 unique queries
which resulted in browsing profiles of 250 to 500 URLs. This
is almost identical to the method that was used in [32].

Of course, only a subset of real users’ web browsing results
from web searches. Nevertheless, we hypothesize that our
profiles model two important aspects of real browsing histo-
ries: the distribution of popularity of web pages visited, and
the topical interest distribution of real users. Popular web-
sites may embed more trackers on average than less popular
sites, and websites on the same topic may be more intercon-
nected in terms of common embedded trackers. Failure to
model these aspects correctly could skew our results.

The reason we recreate the users’ searches on a current
search engine rather than simply using the sites visited by
the AOL users (available in the dataset) is that the distri-
bution of websites visited by real users changes over time as
websites rise/fade in popularity, whereas the distribution of
users’ interests can be expected to be more stable over time.



4.2 Measurement infrastructure
We built our study on top of a web measurement plat-

form, OpenWPM [18], which we developed in earlier work.
The platform has the ability to drive full browsers, such
as Firefox, with any set of browser extensions and collects
a wide range of measurement data as it visits sites.4 In
our study, we use version 0.1.0 of OpenWPM to drive Fire-
fox measurement instances from which we record all HTTP
data for analysis. We configure the measurement instances
to browse with profiles generated from the models described
in Section 4.1, and deploy the crawls on cloud machines in
the United States, Japan, and Ireland.

4.3 Measurements
We deployed OpenWPM on Amazon EC25 instances in

three regions: Northern Virginia, United States, Dublin, Ire-
land, and Tokyo, Japan. We chose these to achieve as much
geographic diversity as possible from Amazon’s limited set
of regions. Each measurement took place on an m3.medium
instance of Ubuntu 14.04 in June 2014. All measurements
were ran using 25 simulated profiles for each (user location,
browsing model, browser configuration) combination.

When making measurements from within the U.S., we
were able to utilize the more realistic AOL browsing model.
We used it under serveral browser configurations: no cookie
blocking, blocking third-party cookies from sites which the
user has not yet visited as a first-party, blocking all third-
party cookies, setting the DNT flag, browsing with HTTPS
Everywhere installed, and browsing with Ghostery installed
and configured to block all possible entities.

For measurements outside of the Unites States, we were
not able to utilize the AOL browsing model as the search
terms and results are likely biased towards U.S. users. In-
stead, we fall back to the Alexa browsing model when do-
ing comparisons between geographic locations. To compare
measurements between the United States, Japan, and Ire-
land we used an Alexa browsing model localized to the most
popular sites within each country.

To run the identifying cookie detection algorithm described
in Section 4.5, we also require synchronized measurements
of each site visit from two separate machines. We ran these
measurements from the Northern Virginia location and vis-
ited all of the links which may be visited by any other mea-
surement instance (13,644 links total).

For all measurements, web pages were visited approxi-
mately once every ten seconds. We set a 60 second timeout
per visit and restarted the browser with consistent state in
the event of a crash.

4.4 HTTP Traffic geolocation
In order to determine the if an HTTP request is bound

for a specific location of interest, we augment commercially
available geolocation data with additional measurement data.
After each measurement instance finished browsing, we ran a
traceroute6 to each unique hostname and recorded the full
output. All IPs returned in each hop of the traceroute were
geo-located with the MaxMind GeoLite27 country databases.

4https://github.com/citp/OpenWPM
5https://aws.amazon.com/ec2/
6Our traceroutes were configured to use a single probe per
hop with a maximum of 25 hops.
7http://dev.maxmind.com/geoip/geoip2/geolite2/

The mapping between IP and physical location is not one-
to-one. Instead, there may be many servers in different lo-
cations which all share the same IP address for various pur-
poses. One such example is anycasting, the process by which
several nodes share the same address and the user is routed
to the nearest node.8

Thus, when determining if an HTTP request enters a spe-
cific country it is not sufficient to simply geolocate the IPs re-
turned from a traceroute to that host. As a solution, we im-
plement a simplified version of the geo-inconsistency check
proposed by Madory, et.al. [33]. We check that the min-
imum round-trip time (RTT) returned by a traceroute to
each hop is greater than the physical minimum RTT assum-
ing a direct fiber-optic connection between the two locations.

Algorithm 1 summarizes the steps we take to perform this
origin-specific geolocation check. Broadly, if the geolocation
of a specific hop returns as being within the country of inter-
est, we find the travel time between the (latitude, longitude)
pairs of the origin server and the geolocated IP. If geolocated
IP’s location is on the country level, we choose the closest
point in the geolocated country from the origin location.
We then use the haversine forumla to calculate the distance
between the two points and find the minimum RTT:

minRTT =2∗ haversine distance∗n
c

where c is the speed of light in units matching the distance
measurement and n is the optical index of the fiber. In our
study, we use n=1.52 as the reference optical fiber index.

Data: httpRequest, testCountry
Result: True/False if httpRequest enters testCountry
origin ← latitude/longitude of origin server
hostname ← parse httpRequest.url
for each hop in hostname traceroute do

location ← geolocate(hop.IP)

if location not in testCountry then
continue

if location not city code then
location ← closest point to origin within country

dist ← haversine(origin,location)
minRTT ←2 ∗ minimum time to travel dist

if hop.RTT > minRTT then
return True

end
return False

Algorithm 1: Origin-specific geolocation check

This check does not guarantee that a specific request en-
ters a country, as network delays could artificially push a
traceroute RTT above the threshold. Our assumption of
a straight-line connection and optical fiber index is also un-
likely to hold in practice. Instead, this check provides a more
realistic upper-bound on the amount of traffic an adversary
at a specific geographic location can monitor. For example,
this check eliminated the numerous examples we observed
of traceroutes originating in Ireland and Japan having ge-
olocations within the United States with RTTs of <5ms.

We use a simplified version of this check when examining
if requests are exiting the United States. Since a request can

8CloudFlare, for example, claims to use anycasting as part of
their content delivery network: https://www.cloudflare.
com/features-cdn
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https://www.cloudflare.com/features-cdn
https://www.cloudflare.com/features-cdn


be bound for any non-U.S. destination, we do not attempt to
find the closest point in each country. Instead, we only check
that the observed RTT is greater than the minimum RTT
to the geolocation point regardless of the point’s location.

4.5 Detecting unique identifier cookies
An essential task to quantifying our attack is the ability

to detect which cookies are identifying. Identifiers can be
stored in many locations (e.g. HTTP cookies, Flash cook-
ies), but to be sent back to trackers the identifiers must
be included in HTTP cookies or query parameters of the
request. We choose to focus HTTP cookies as they are in-
cluded in every request and thus provide a generic approach
that does not necessitate the parsing of URL parameters for
all sites under surveillance. Furthermore, non-cookie track-
ing techniques are ordinarily paired with tracking cookies;
our approach indirectly incorporates an adversary’s capabil-
ities against those technologies.

For our analysis, we are interested in the host (the domain
that set the cookie), name, and value fields of a cookie and
determine if the data stored in the value field is identifying.
This algorithm is a modified version of one we used in a
previous study [6].

To be useful to the adversary as identifiers, cookie values
must have two important properties: persistence over time
and uniqueness across different browser instances. Based on
these criteria we develop an algorithm that classifies cookies
as identifiers. Our algorithm is intentionally conservative,
since false positives risk exaggerating the severity of the at-
tack. Our method does have some false negatives, but this
is acceptable since it is in line with our goal of establishing
lower bounds for the feasibility of the attack.

We define a cookie to be an identifier cookie if it meets
the following criteria: (1) It is long-lived, with expiry times
longer than three months. The three month cut-off matches
our AOL dataset three month window. (2) It’s value is sta-
ble, and remains constant through all page visits. Dynamic
value strings may be timestamps or other non-identifiers. (3)
Has a constant-length across all our datasets. (4) Is user-
specific, so the values are unique across different browser in-
stances in our dataset. (5) Has a high-entropy value string,
with values sufficiently different between machines to enable
unique identification. To test for this, we used the Ratcliff-
Obershelp [13] algorithm to compute similarity scores be-
tween value strings. We filtered out all cookies with value
strings that were more than 55% similar to value strings
from the corresponding cookies of different measurements.

We run our detection algorithm on the synchronized mea-
surement data described in Section 4.3. By using synchro-
nized measurements, we avoid the problem of sites chang-
ing their cookie interaction behavior depending on a user’s
browsing time. For instance, in relation to the entropy
heuristic, cookies with values that depend on time stamps
will be easier to detect and ignore if the crawls have nearly
the same timestamps for all actions. For other measure-
ments, we extract identifying cookie values by searching for
cookies which match the identifying (host, name) pairs clas-
sified in the synchronized measurements.

4.6 Transitive Cookie Linking
Building the graph. Once we determine which cook-

ies contain unique identifiers, we use the http_requests,
http_responses, and http_cookies tables of the OpenWPM

crawl database to cluster traffic. From these tables, we con-
struct cookie linking graph using Algorithm 2, which cre-
ates a graph with two node types: URL nodes and Cookie
nodes. URL nodes are identified by the tuple (U, <node

url>, <request’s geographic destination>) and cookie
nodes consisting of the tuple (C, <cookie_value>).

Edges are created under the assumption that a network
adversary will be able to link all requests and responses for
a single page visit together if he can both follow the chain
of referrer and redirect headers for HTTP requests from a
single IP. URL — URL edges are created under two condi-
tions: (1) one url node was observed as the referer on a
request to the connected url node or (2) one url node was
returned in the location field of a 301 or 302 redirect re-
sponse to the request for the connected url. An adversary is
only able to link together different page visits by the shared
cookie values loaded on each page. As such, URL — Cookie
edges are created whenever a cookie value is observed in
the Cookie field of an HTTP Request header or the Set-

Cookie field of an HTTP Response header. Notice that the
only linking between separate page visits in the graph occurs
when two HTTP requests/responses happen to link to the
same Cookie node, while referrer and redirection chaining
provides linking within a page visit.

Data: httpRequests and httpResponses for useri
Result: Graph Gi for useri with URL & Cookie nodes
for each visited url do

for httpRequest do
if HTTPS then

continue

urlNode ← createNode (U, req.url, req.inUS)
G.addNode(urlNode)

if req.referer is not empty then
refNode ← createNode (U, ref.url)
G.addNode(refNode)
G.addEdge(refNode, urlNode, req.inUS)

if req.cookie is not empty and is identifying
then

cookieNode ← createNode (C, cookie.value)
G.addNode(cookieNode)
G.addEdge(cookieNode, urlNode, req.inUS)

end
for httpResponse with Set-Cookie do

if HTTPS then
continue

if cookie is identifying then
cookieNode ← createNode (C, cookie.value)
urlNode ← node for requested url
G.addNode(cookieNode)
G.addEdge(cookieNode, urlNode, req.inUS)

end
for httpResponse with location field do

if HTTPS then
continue

urlNode ← node for requested url
locNode ← createNode (U, loc.url)
G.addNode(locNode)
G.addEdge(locNode, urlNode, req.inUS)

end

end
Algorithm 2: Cookie Linking algorithm



Analyzing the graph. In our analysis all graphs only
contain traffic for a single user. This allows us to find the
connected components within the graph and utilize the gi-
ant connected component (GCC) to find the amount of a
single user’s traffic an adversary is able to link. Once the
GCC is found, we take the intersection of the set of URLs
contained in the GCC with the set of URLs visited during
the measurement to find the amount of top-level page visits
an adversary is able to observe. When the adversary applies
the attack in a multi-user setting, they will have many dis-
joint subgraphs per user of varying size. Depending on the
adversary’s goal, these clusters could be processed to link
them individually to real world identities, or disambiguated
by identifying disjoint sets of cookies for the same sites.

When evaluating adversaries restricted by policy or ge-
ographic constraints, an additional pre-processing step is
required before finding the GCC. Utilizing the geolocation
data from Section 4.4, we are able to filter nodes from the
cookie linking graph based on geographic restrictions. In
order to determine the amount of traffic for a specific user
that a U.S. restricted adversary has access to, we filter all
edges from the cookie linking graph that were not added
due to U.S. bound requests. We create a subgraph from this
filtered edge list and continue the normal linking analysis.

4.7 Identity leakage in popular websites
We conducted a manual analysis of identity leaks on the

most popular pages which allow account creation. The top-
50 pages are a useful representation for how heavily-used
sites with user accounts manage data, and are more likely
to be visited by a real user. We identified 50 of the Alexa top
68 U.S. sites that allow for account creation and signed up
test accounts when possible. We then examined the home-
page, account page, and several random pages on each site
to see if any of identifiers are displayed on an HTTP page. If
so, an adversary collecting HTTP traffic for that user could
inspect the contents of the page to find the identifier and
link it to any tracking identifiers also loaded on the page.

5. RESULTS
In the course of our measurements we make nearly 100,000

page visits to 13,644 distinct sites under several client and
adversary models. Of these 13,644 sites, nearly all of them
(13,266) make requests for external content from a host dif-
ferent than the domain of the host visited.

5.1 Clustering
In this section, we evaluate the effectiveness of our pro-

posed attack under several (adversary, client) models. We
are primarily interested in the number of web pages visited
by a user which are located in the giant connected compo-
nent (GCC) relative to the number of pages with embedded
third-parties. We focus on large connected components be-
cause the probability that a cluster will have at least one
page visit that transmits the user’s real-world identity in
plaintext increases with the size of the cluster. Manual in-
spection shows that page visits not in the large connected
components belong to small clusters, typically singletons,
and are thus unlikely to be useful to the adversary.

An adversary’s incomplete view. We must consider
that the adversary’s position on the network may not give
them a full view of any user’s traffic. The adversary’s view
may be limited due to its policy or geographic restrictions

as described in Section 3, however even with these consider-
ations an adversary may not see all of a user’s traffic. A user
may change locations on the network or alternative routes
taken by packets through the network might result in gaps
in the adversary’s data collection. To model the adversary’s
partial view of the user’s browsing activity, we repeat our
analysis with random subsets of web pages of various sizes.

For illustration, Figure 2a shows how the GCC of a single
AOL user’s page visits (y-axis) grows as we vary the com-
pleteness of the adversary’s view of the user’s HTTP traffic
(x-axis). Each data point was computed by taking 50 inde-
pendently random samples of page visits. For each sample
we apply the clustering algorithm and compute the fraction
contained in the GCC. We then average the fractions across
the 50 samples. Since we wish to simulate these page vis-
its being spread out over time, only cookies with expiration
times at least three months into the future were included
when computing the clusters.
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Figure 2: Clustering, random subsets of traffic

Thus for each (x,y) pair we can say that if the adver-
sary captures x web page visits by a user in the course of
a wiretap, they could link approximately y% of those visits
into a single cluster. The numbers we see for this user are
typical — the fraction is around 55% for even very small
clusters and exceeds 60% as the cluster size increases. As
discussed in Section 4, we average all results over N = 25
client instances for all (client, adversary combinations).

We alternatively examined an adversary who sees subsets
of web pages that the user visited in chronological order
(perhaps the adversary only observed the user for a short
period of time). These results had no statistically signifi-
cant differences from random subsets. As such, we present
the remainder of the graphs using random subsets.

Unrestricted Adversary — AOL User Profiles We
first examine the level of clustering an adversary can achieve
when it is not subject to any policy or geographic restric-
tion. The results for users simulated under the AOL brows-
ing model and no blocking tools are included in Figure 2b.
These results show that the clustering remains very similar
to the single user case of Figure 2a, except that no incon-
sistencies remain. After just 55 web page visits observed
by the adversary, the growth of the GCC flattens out to
62.4±3.2% after 200 sites. For the remaining results, we will
only present values for this asymptotic case of 200 sites, as
the shape of the GCC growth is nearly identical in all cases.

Unrestricted Adversary — Alexa profiles Next we
examine the effect of the browser model on the ability of
an unrestricted adversary to cluster user data. We hold
the user location and browser configuration set to browsing
within the U.S. with no blocking settings. Figure 2b com-
pares the results for Alexa profiles for U.S. users against the
AOL profiles. The Alexa clustering shows a similar growth



pattern with an offset around 10% higher on average, with
an overall level of clustering after two sites of 72.9±1%.

5.2 U.S. Users Under One-End Foreign
We now consider an adversary located within the United

States who is constrained by the“one-end foreign” rule when
collecting data on U.S. users. The client model used in eval-
uating this adversary is U.S.-based users browsing random
subsets of the Alexa top-500 U.S. sites with no blocking
tools. The size of the largest cluster observed reduces to
just 0.9±0.2% of visited sites averaged across all instances.

To understand why this occurs, we must look at the com-
position of HTTP traffic. For the average user in this (ad-
versary, client) pair, at least one non-U.S. sub-resource re-
quest occurs for 31.7% of the Alexa top-500 sites in the U.S.
However, the overall number of HTTP Requests leaving the
United States is comparatively small, accounting for just
2.0% of all requests. Only considering traffic where an ad-
versary could learn the top-level domain through the re-
ferrer headers, this reduces to 22.7% of visits and 1.6% of
requests.9 Although nearly a quarter of a user’s browsing
history is visible to the adversary, we show that cookie link-
ing is an ineffective method to cluster this traffic.

5.3 Cookie Linking in Non-U.S. Traffic
We now explore the level of clustering that is possible

for traffic with a non-U.S. origin. We examine two differ-
ent cases in this section: we first show the level of clustering
possible under the assumption that the adversary will see all
web requests that occur for a specific page visit and then we
show what an adversary observing U.S.-bound traffic would
see. A key point to note is that even if the majority of a web-
site’s resources are requested from a local server, embedded
third-parties may cause U.S.-bound requests to occur which
have the domain of the first-party as a referrer.

User Location Unrestricted Adver. US-based Adver.
Japan 59.6±1.2% 20.9±0.7%
Ireland 63.8±1.2% 12.8±1.1%

Table 1: Clustering of non-U.S. users by an adversary with
no restrictions vs. one restricted to U.S. bound traffic.

Unrestricted Adversary — non-U.S. profiles When
all requests are considered, the level of clustering is similar
to that of the U.S.-based Alexa user simulations. Table 1
shows amount of clustering that occurs for users in Ireland
and Japan under the random subset clustering model. Simu-
lated users in Ireland can expect around 63% of traffic to be
clustered, while users in Japan can expect nearly 60%. We
believe the differences between user simulations generated
using Alexa’s top U.S., Japan, and Ireland lists arises from
the difference in the number of included third parties on the
first party (i.e., 62, 38, and 30 on average, respectively).

U.S. based Adversary — non-U.S. profiles We then
restrict the clustering to only consider requests which are
U.S. bound, and cluster based on the information available
to a geographically restricted adversary. This could include
an adversary within the United States, or an adversary sit-
ting at the entrance to undersea cables returning to the
United States. Table 1 shows clustering capabilities of an

9These results are broadly consistent with measurements
taken by several of this paper’s authors in past work [36].

adversary restricted to these conditions. In Ireland, we see
a reduction to around 13% of page visits and in Japan we
see a less severe decrease to 20% of visited sites.

5.4 Cookie Linking Under Blocking Tools
We now investigate several ways users may mitigate a clus-

tering attacking using currently available consumer tools.
For all blocking configurations, we make measurements us-
ing the AOL browsing model and we examine the ability of
an unrestricted adversary to cluster traffic. Measurements
are run using several different privacy settings within the
browser and two popular privacy and security add-ons.
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Figure 3: Clustering under several privacy settings.

Baseline displays the level of clustering with no privacy
settings or blocking tools enabled. This represents an upper
bound on the level of tracking we would expect to see under
the other configurations.

DNT had a negligible effect on clustering, showing no sta-
tistically significant difference than without blocking.

Cookie blocking policies are more effective, particularly
when an adversary sees a low number of page visits. We
block cookies for sites that have not been visited in a first-
party context by setting “Accept third-party cookies: From
visited” in Firefox (this is also the default in Safari). When
set, the level of clustering reduces to 43.9±3.2%. Blocking
all third-party cookies further reduces this to 30.2±3.0%.

HTTPS Everywhere is an extension created by the EFF to
force HTTPS connections whenever available. Since HTTPS
requests are not visible to an attacker, and HTTP requests
from HTTPS origins will not include a referer (preventing
the attacker from linking requests back the the original site).
A site can fall into one of four categories: no support for
HTTPS, supported but not the default, supported and used
by default, and finally, HTTPS-only. This measurement pro-
vides a picture of what happens as more sites support and
use HTTPS by default. Under our browsing model, the
number of HTTPS requests increases from 12.7% to 34.0%
and the level of clustering is reduced to 46.1±3.2%.

Ghostery is a popular list-based browser extension for
blocking third-party requests to domains considered to be
trackers. This proves to be the most effective solution for
users, reducing the level of clustering to 24.2±2.8% of vis-
ited sites. Enabling Ghostery and configuring it to block as
much as possible reduces the average number of inclusions
from external hosts to just 5.2 per first-party.

5.5 Identity Leakage
Table 2 summarizes our results from a manual survey of

the Alexa U.S. sites. We picked the top 50 sites that sup-
port account creation. 44 of the 50 websites used HTTPS
to secure login pages.10 Only 19 of those sites continued to

105 of the remaining 6 made POSTs with credentials and 1
made a GET with the credentials as a URL query parameter



use HTTPS to secure future interactions with the user after
logged in. We summarize the cleartext identity leaks for the
websites which no longer continue to use HTTPS after login.

Although a majority of sites secure user credentials on
login pages, personally identifying information (name, user-
name, email address) is transmitted much more frequently
via HTTP. Over half of the surveyed sites leak at least one
type of identifier, and 42% (not shown in table) leak either
username or email address, which can be used to uniquely
infer the user’s real-world identity. Past work [34, 29] has
found a roughly equivalent level of leakage to occur through
the Request-URI and Referer.

A representative example of the web’s identity-leak prob-
lem is imdb.com. IMDB provides a secure login page, but
once logged in, users return to an HTTP page. This page
includes the user’s full name on the homepage of the site.
Every time a user visits the site while logged in, a passive
attacker can extract the name from the unencrypted traffic.

Plaintext Leak Type Percentage of Sites
First Name 28%
Full Name 14%
Username 36%

Email Address 18%
At least one of the above 56%

Table 2: Leakage on Alexa Top 50 supporting user accounts

Furthermore, we verified that pages from these popular
sites that leak identity occur in the clusters of web pages
found in our attack. Specifically, at least 5 (and an average
9.92) of the 28 sites we found to leak some type of identity
were found in the giant connected component of every one
of the 25 Alexa U.S. users. Due to global popularity of the
top-50 U.S. sites, an average of 4.4 and 6.4 of these identity
leaking sites are found in the GCC’s of the Alexa Japan and
Alexa Ireland users, respectively. Additionally, for the AOL
profiles with no blocking, 9 of the 25 simulated users had at
least 1 identity leaker in the GCC. Of course, there are likely
also many sites outside the top 50 that leak identity and are
found in these clusters, but we did not measure these.

Taken together with our results on clustering, our mea-
surements show that a passive attack is highly feasible: after
observing only a fraction of a user’s web traffic the adversary
will be able to link the majority of the user’s web requests
together and furthermore, use the contents of the responses
to infer the user’s real-world identity.

6. DISCUSSION

6.1 Linking without IP address
So far we have assumed that the adversary sees the same

source IP address on a request to a first-party site and its
corresponding third-party tracker, and that this can be used
to link the two requests. There are at least two scenarios in
which this assumption is problematic. The first is a NAT.
If two users, Alice and Bob, behind the same NAT visit the
same web page at roughly the same time, the adversary sees
the same IP address on all ensuing HTTP requests. The
other scenario is when the user employs Tor without proper
application layer anonymization, and the adversary is able
to sniff cookies only on the path from the exit node to the
web server. (If the user is using a properly configured Tor

setup, such as the Tor browser bundle, this attack does not
work at all). Since Tor will, in general, use different circuits
for communicating with different servers, the adversary will
see different source IPs for the two requests (or may be able
to observe only one of the requests).

However the well-known “intersection attack” can be used
to link requests without using the IP address: if a cookie
value a associated with page A’s domain and a cookie value x
associated with an embedded tracker domain X are observed
multiple times near-simultaneously (e.g. within 1 second of
each other), then a and x are probably associated with the
same user. Intuition suggests that for all but the busiest of
web pages, two or three visits may be sufficient to link the
first-party and tracker cookies with each other. However,
this claim cannot be rigorously evaluated without access to
large-scale HTTP traffic and so we leave this as a hypothesis.

6.2 NSA Surveillance
Our results bear directly on the NSA’s technical capabil-

ities, against individuals both within and external to the
United States. For non-U.S. individuals, our data indicates
that the agency could have access to a majority of a per-
son’s browsing history (71.3% of visits in Ireland and 61.1%
of visits in Japan), without ever collecting data outside the
United States.11 Furthermore, we show that the agency can
link a non-trivial portion of this traffic through cookies.

Nearly a quarter of U.S. page visits are visible outside
the U.S. through third parties and referers. While we show
that linking is infeasible, this does not imply that U.S. users
browsing domestic sites are safe from NSA surveillance. Pas-
sive tracking techniques, or a static IP address, could cause
the user’s traffic to be just as vulnerable.

6.3 Mitigation by users
Figure 3 shows that users can minimize their exposure to

surveillance through cookies, but can not eliminate it all to-
gether. Since the identifiers of advertising networks play a
key part in the transitive linking of page visits, ad filtering
lists (e.g. Ghostery) are currently the most effective solution
for users. However even after blocking these lists, ISP level
identifiers like Verizon’s UIDH would cause the vulnerabil-
ity to persist [26]. Firefox’s built-in cookie blocking can also
be effective in reducing the level of traffic clustering, though
even the most restrictive option leaves nearly a third of a
user’s traffic vulnerable to clustering.

Users have very little control over identity leakage outside
of stopping the use of services. Forcing HTTPS connections
after login can help (i.e. using HTTPS Everywhere), but as
we show in our measurements, two-thirds of sites still do not
support HTTPS after this step is taken. Users can also be
careful to not reuse usernames between sites as this could
provide an additional identifier to link page visits.

6.4 Mitigation by trackers
Trackers can prevent a passive eavesdropper from piggy-

backing on their unique identifiers if they are only trans-
mitted over HTTPS. Some trackers have already deployed
HTTPS to avoid mixed content warnings when embedding
in HTTPS pages. There are also subtle issues, such session

11Alternatively, the agency could rely on collection points
just outside the U.S. That approach would fall under Exec-
utive Order 12333, which affords more latitude than Section
702 of the FISA Amendments Act.

imdb.com


tickets used for TLS session resumption, which can be used
by an eavesdropper to link multiple HTTPS connections to
the same browser instance similar to a cookie.

Unfortunately, a large fraction of trackers would need to
deploy such mitigation strategies for them to make a dent in
the adversary’s overall chances. As we showed in Section 5.4
with our HTTPS Everywhere measurements, the feasibility
of traffic clustering only drops by 23% when the amount
requests occurring over HTTPS more than doubles.

6.5 Limitations
A couple of important limitations of the attack must be

pointed out. First, using the Tor browser bundle likely de-
feats it. “Cross-origin identifier unlinkability” is a first-order
design goal of the Tor browser, which is achieved through a
variety of mechanisms such as double-keying cookies by first-
party and third-party [44]. In other words, the same tracker
on different websites will see different cookies. However, our
measurements on identifier leakage on popular websites ap-
ply to Tor browser usage as well. Preventing such leakage is
not a Tor browser design goal.

Simply disabling third-party cookies will also deter the at-
tack, but it is not clear if it will completely stop it. There
are a variety of stateful tracking mechanisms in addition to
cookies [14, 23, 51, 37, 6], although most are not as prevalent
on the web as cookies are.

We also mention two limitations of our study. First, while
a significant fraction of popular sites transmit identities of
logged-in users in the clear, we have not actually measured
how frequently typical users are logged in to the sites that
do so. Anecdotal evidence suggests that this number must
be high, but experiments on actual user sessions are required
for an accurate estimation of vulnerability.

Second, we use commercial geolocation data with an ad-
ditional custom metric to determine if requests enter the
United States for users in Japan and Ireland, and to de-
termine if requests leave the United States for users within
the U.S. Even with this additional check, two scenarios can
occur: requests outside the U.S. can be marked as entering
the U.S. due to an incorrect geolocation and high network la-
tency, and requests inside the U.S. can be marked as staying
in the U.S. if they are incorrectly geolocated as being further
away than the actual location of the destination (which may
still be external to the U.S.).

6.6 Other applications of our methodology
Stated in general terms, we study an adversary with a

given set of technical capabilities, network positions, and
policy restrictions, and ask, for a given user browsing model,
how much of her activity is vulnerable. Our general algo-
rithm in Section 4 can be easily adapted to study a variety
of questions that fit this framework. For example, we might
assume an adversary who can can compel certificate creation
and uses this to spoof some third parties on secure websites
to launch active attacks. Here the relevant measurement
would be the prevalence of active third-party content on
websites visited by typical users and the geographic distri-
bution of third parties serving such content.

7. CONCLUSION
While much has been said from a legal, ethical and policy

standpoint about the recent revelations of NSA tracking,
many interesting technical questions deserve to be consid-

ered. In this paper we studied what can be inferred from
the surveillance of web traffic and established that utiliz-
ing third-party tracking cookies enables an adversary to at-
tribute traffic to users much more effectively than methods
such as considering IP address alone. We hope that these
findings will inform the policy debate on tracking, raise user
awareness of subtle, inferential privacy breaches, and lead
to the development of better defenses and greater adoption
of existing ones.
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